[math-fun] Somos sequence fully closed form
Somos sequences are expressible as quadratic powers times theta functions, but these entail mysterious parameters empirically determined to make the first few terms come out right. An exception from arxiv.org/pdf/math/0703470 : RSolveInYourDreams[{a[n] == (a[-2 + n]^2 + a[-3 + n] a[-1 + n])/a[-4 + n], a[1] == 1, a[2] == 1, a[3] == -1, a[4] == Root[17 + 21 #1 - 5 #1^2 + 3 #1^3 + #1^4 &, 1]}, a[n], n] would give a[n]->ChebyshevU[-1 + n, 1/(2 Root[-1 - #1 + #1^4 &, 2]^(3/2))]* Root[-1 - #1 + #1^4 &, 2]^(1/2 (-1 + n^2)) featuring two nondescript quartic surds. Test: In[492]:= First /@ NestList[Append[Rest[#], (#[[4]] #[[2]] + #[[3]]^2)/#[[1]] // RootReduce] &, {1, 1, -1, Root[17 + 21 #1 - 5 #1^2 + 3 #1^3 + #1^4 &, 1]}, 7] Out[492]= {1, 1, -1, Root[17 + 21 #1 - 5 #1^2 + 3 #1^3 + #1^4 &, 1], Root[-11 + 36 #1 - 8 #1^2 - #1^3 + #1^4 &, 1], Root[89 - 731 #1 - 210 #1^2 - 18 #1^3 + #1^4 &, 2], Root[-379 - 12391 #1 + 2354 #1^2 - 134 #1^3 + #1^4 &, 2], Root[119 + 20913 #1 - 155 #1^2 + 51 #1^3 + #1^4 &, 1]} In[494]:= Table[RootReduce[ ChebyshevU[-1 + n, 1/(2 Root[-1 - #1 + #1^4 &, 2]^(3/2))]* Root[-1 - #1 + #1^4 &, 2]^(1/2 (-1 + n^2))], {n, 8}] Out[494]= {1, 1, -1, Root[17 + 21 #1 - 5 #1^2 + 3 #1^3 + #1^4 &, 1], Root[-11 + 36 #1 - 8 #1^2 - #1^3 + #1^4 &, 1], Root[89 - 731 #1 - 210 #1^2 - 18 #1^3 + #1^4 &, 2], Root[-379 - 12391 #1 + 2354 #1^2 - 134 #1^3 + #1^4 &, 2], Root[119 + 20913 #1 - 155 #1^2 + 51 #1^3 + #1^4 &, 1]} If ISC (etc?) tabulated the mysterious parameters in the theta formulas, maybe one day they'd suddenly become nonmysterious. --rwg
participants (1)
-
Bill Gosper