Re: [math-fun] Before I make a fool of myself to Wolfram Support
14 Jun
2014
14 Jun
'14
1:57 p.m.
Message: 3 Date: Thu, 12 Jun 2014 16:36:30 -0700 From: Bill Gosper <billgosper@gmail.com> .. Can anyone justify this? In[1467]:= Table[(Cot[(k \[Pi])/p] Sin[k \[Pi]])/p, {p, 4}]
Out[1467]= {Cos[k \[Pi]], 1/2 Cot[(k \[Pi])/2] Sin[k \[Pi]], 1/3 Cot[(k \[Pi])/3] Sin[k \[Pi]], 1/4 Cot[(k \[Pi])/4] Sin[k \[Pi]]}
In[1468]:= FullSimplify[%, k \[Element] Integers]
Out[1468]= {(-1)^k, Cos[(k \[Pi])/2]^2, 0, 0}
Millions(?) of users, dozens of years, yet things like In[1471]:= FullSimplify[{I^k - I^(5*k) + 1, I^k - I^(5*k) + one}, k \[Element] Integers]
Out[1471]= {1 + I^k - I^(5 k), one}
Sometimes it feels like reality rot. --rwg
I do not understand that Mathematica notations: do you mean cot(k*(Pi)/p)*sin(k*(Pi))/p for p = 1 ... 4, k integer?
4179
Age (days ago)
4179
Last active (days ago)
0 comments
1 participants
participants (1)
-
Axel Vogt