Just a few more minutes raises the limit to this: 24524920689683934612523815466510509898977114040073848370088830506614177804428792983800066702703080692136684365181903088684884343920553287594894772073041785466123008435725367696575050925379097143890123169555297567493687565236627642109260606865191349252713802534939006333041841571236727111758337703161241471270261635988459529545920123394624337400037677377619985418743172798689446836259406446091967885994585159218873682917457765198388770816496360584258785017529237898784829543352882111310293679268695489382196534568966648325 -tom On Fri, Oct 9, 2020 at 2:01 PM Tomas Rokicki <rokicki@gmail.com> wrote:
If there is, it must be greater than
276792026060022456497058911697376830627911091457539277300827264605865506146172478305720990198054221114105111525234958335011060935983844946443475003682525687205923438462532622519320479701851802392
This is the smallest number that is not a Fibonacci number that is not excluded by this modulus:
5752028405020859396395768625940010545359026815479616133477751814335827064308752092084424225510402022972844755481554083297677086937356202818322021388807601850180058538115156217193711471626944740035227
I suspect there's a simple proof that there is no such number.
Raising the limit above is straightforward; that's from a few minutes of CPU time.
-tom
On Thu, Oct 8, 2020 at 8:07 PM James Propp <jamespropp@gmail.com> wrote:
Does there exist a positive integer n that isn’t a Fibonacci number, such that for every modulus m there is a Fibonacci number congruent to n mod m?
Jim Propp _______________________________________________ math-fun mailing list math-fun@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/math-fun
-- -- http://cube20.org/ -- http://golly.sf.net/ --
-- -- http://cube20.org/ -- http://golly.sf.net/ --