5 Mar
2016
5 Mar
'16
6:45 p.m.
Because (in Wolfram notation) Beta[ 1/2, N/2-Sqrt[N*0.49*Log[Log[N]]], N/2+Sqrt[N*0.49*Log[Log[N]]] ] goes to 0 when N-->infinity. Here is a table for N=10^k k | Beta value 1 | 0.00369675 2 | 1.73794*10^-30 3 | 9.6119*10^-302 4 | 2.1738412136*10^-3011 5 | 1.715030375*10^-30104 6 | 6.5603975*10^-301032 7 | 2.6446880*10^-3010302 8 | 2.344465*10^-30103002 9 | 6.6534*10^-301029999
--Actually, I'm skeptical this table output by Wolfram software, is numerically accurate. But the beta value really does go to 0, which is what matters for my argument. -- Warren D. Smith http://RangeVoting.org <-- add your endorsement (by clicking "endorse" as 1st step)