* Joerg Arndt <arndt@jjj.de> [Oct 10. 2012 13:02]:
[...]
Now we really like to know the two '?' ...
Writing R1 and R2 for the '?'s and starting the product at index one, I get: inf /===\ | | [ k ] [ X X ] | | [ 0 a*q ] = [ ] | | [ ] [ Y Y ] k = 1 [ 1 1 ] Now we can recognize your matrix product [R1, U; R2, V]: [0,1;1,1]^(-1) * [ X, X; Y, Y ] \\ == [ R1, U; R2, V ] \\ == [ -X+Y, -X+Y; X, X ] That is inf /===\ | | [ k ] [ U U ] | | [ 0 a*q ] = [ ] | | [ ] [ V V ] k = 0 [ 1 1 ] where (as before) U(a,q) = a * sum(n=0,N, a^n*q^(n^2+n) / prod(k=1,n, 1-q^k) ); V(a,q) = sum(n=0,N, a^n*q^(n^2) / prod(k=1,n, 1-q^k) ); I'll now put this in.