3 Sep
2013
3 Sep
'13
12:06 p.m.
Are there (positive) integers m,n definable in PA whose existence is provable in PA such that m \geq n and n \geq m are undecidable in PA? (I think that's the right way to ask the question I have in mind, but if my wording evinces misunderstanding of foundational issues, please enlighten me!) What if we replace PA by a stronger theory? The underlying intuition is that if there are incomprehensibly big numbers, at some point even comparative notions of bigness should start to fail us, so that, in a certain sense, the well-ordering of the natural numbers should become problematical. But my intuitions may be totally off-base... Jim Propp