Dougall's thm:
a
hyper_f ([a, - + 1, b, c, d, n - d - c - b + 2 a + 1, - n],
7, 6 2
a
[-, - b + a + 1, - c + a + 1, - d + a + 1, - n + d + c + b - a, n + a + 1])
2
(a + 1) (- c - b + a + 1) (- d - b + a + 1) (- d - c + a + 1)
n n n n
= -------------------------------------------------------------------.
(- b + a + 1) (- c + a + 1) (- d + a + 1) (- d - c - b + a + 1)
n n n n
I found an early 70s (pre matrix-calculus) printout from a secret Xerox
device (a LASER printer!) implying
a
hyper_f ([a, b, c, d, - n, n - d - c - b + 2 a, - + 1],
7, 6 2
a
[- b + a + 1, - c + a + 1, - d + a + 1, - n + d + c + b - a + 1, n + a + 1, -], 1)
2
= - (a + 1) (- c - b + a + 1) (- d - b + a + 1) (- d - c + a + 1)
n n - 1 n - 1 n - 1
((d + c + b - a) n (n - d - c - b + 2 a) + (c + b - a) (d + b - a) (d + c - a))
/((- b + a + 1) (- c + a + 1) (- d + a + 1) (- d - c - b + a) ).
n n n n
(Tested through n=5).
The latter cannot be a variable-rename of the former, because the lower
parameters minus the upper parameters total 2 in the former and 4 in the
latter. Presumably, there's a q-extension. Can this be "new"? We'd
need several more before we'd have enough to seed the contiguity
relations and evaluate the whole mesh.
--rwg