>Lemma: The apical solid angle of an isosceles trapezoidal pyramid
with vertex angles a,b,a,c is
2 c b c 2 b
- sin (-) + (cos(a) - 1) sin(-) sin(-) - sin (-) + cos(a) + 1
2 2 2 2
(d79) 2 acos(-------------------------------------------------------------)
b c
(cos(a) + 1) cos(-) cos(-)
2 2
I derived this by splitting the general a,b,a,c hedral vertex into
trihedrals a,b,d and d,a,c, then maximizing over d, getting
b c
(d38) cos(d) = cos(a) - 2 sin(-) sin(-)
2 2
Clearer might have been the difference between two isosceles trihedrals:
solid_angle(d,d,b)-solid_angle(d-a,d-a,c)
with d chosen to equalize the dihedrals, using
dihedral(a,b,c):=acos(csc(a)*csc(b)*cos(c)-cot(a)*cot(b)),
which gives
sin(a)
d = atan(----------------------),
b c
cos(a) - csc(-) sin(-)
2 2
and eventually the same solid angle formula. But the max technique
generalizes from trapezoidal pyramids to arbitrary quadrilateral
pyramids with apex angles a,b,c,d, whose maximal solid angle is
cos(d) + cos(c) + cos(b) + cos(a) a b c d
--------------------------------- - tan(-) tan(-) tan(-) tan(-)
a b c d 2 2 2 2
4 cos(-) cos(-) cos(-) cos(-)
2 2 2 2
Note we get the old formula when d=0. Note also the symmetry, giving
the same result for a,b,d,c. In this maximal case, the "diagonal
angles", i.e. the apex angles exposed by splitting into two triangular
pyramids, are
a d b c b d a c
2 (sin(-) sin(-) + sin(-) sin(-)) (sin(-) sin(-) + sin(-) sin(-))
2 2 2 2 2 2 2 2
acos(1 - -----------------------------------------------------------------)
c d a b
sin(-) sin(-) + sin(-) sin(-)
2 2 2 2
and same(a<->c). This is analogous to the maximal area of a quadrilateral
with sides a,b,c,d (or a,b,d,c):
sqrt((c + b + a - d) (d - c + b + a) (d + c - b + a) (d + c + b - a))
---------------------------------------------------------------------,
4
with diagonals
(a d + b c) (b d + a c) (b d + a c) (c d + a b)
sqrt(-----------------------) and sqrt(-----------------------).
c d + a b a d + b c
Whose formula is this? (Superhero of Alexandria?) And what about
arbitrary pentagons, etc? Are the maximal areas fixed w.r.t.
permuting the sides? The formulas must be doozies.
--rwg
IMPORTUNATE PERMUTATION