FOTD 17-03-10 (Epsilon to Patrick [6])
FOTD -- March 17, 2010 (Rating 6) Fractal visionaries and enthusiasts: The parent fractal of today's image is an everyday Mandelbrot set. This is true only on the surfaqce however. In its depths, this M-set takes on the characteristics of the Zexpe fractal, which has the formula (Z^(2.718...)+C). Today's image lies deep enough that the Zexpe characteristics are fully developed. The image is located on the northeast shore line of the main bud of its parent M-set. The minibrot at the center displays the full Zexpe shape, though the surrounding elements, while numbering around 5, show Mandelbrot-set characteristics. I named the image "Epsilon to Patrick". The Epsilon shape and the fact that March 17 is Saint Patrick's Day inspired the name. The rating of a 6 indicates that I consider the image to be only slightly better than FOTD average. The calculation time of 2-3/4 minutes may be avoided by surfing to the new FOTD web site at: <http://www.Nahee.com/FOTD/> and viewing the completed image there. Absolutely perfect weather prevailed here at Fractal Central on Tuesday, with clear skies and a temperature of 61 F 16C. The fractal cats approved wholeheartedly. My day was on the busy side, but not so busy as to keep me from finding an average fractal image. The next in the endless series of fractals will be posted in 24 hours. Until then, take care, and don't fall for the manmade-global-warming scam. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Epsilon_to_Patrick { ; time=0:02:44.69-SF5 on P4-2000 reset=2004 type=formula formulafile=basicer.frm formulaname=FinalDivideBrot function=recip float=y center-mag=-0.7909685423430249/+0.1464022856501517\ /1.376139e+009/1/10/0 params=2.718281828459/100/0/0 maxiter=2400 inside=0 logmap=358 periodicity=6 colors=000r_VuZTsYRrXPqWNpULoSKnQImOGlMEkKCjIBfIDb\ IEZIFWIGSIHOIILIJKHMKGPJFSJEUIDXIC_IJaHNdHSgGYjGel\ FmoFrrFvt8wr7tq7pq7lq6gp6cp6_p5Vo5Ro5No4In4En4An8F\ jCKgGOdKTaOXZRaVVfSZkPboMfrJisGhsHgqHfnHckHahH_eIZ\ bIY_IXXIWUIVRJUOJSLJQIJOFJPEIQEIREHSEHTEGUEGVEGVEF\ WEFXEEYEEZEE_ED`EDaECbECcECeEBgEBiEAkEAmEAkGBjIBhJ\ CgLCeMDdODbQDaRE_TEZUFXWFWXGUZGT`GRaHQcHOdINfIMgIO\ fFQfDSfBUf9Wf7Yf5_f3`f1ag3ah4ai5aj6bk7bl8bm9bnAcoB\ cpCcpEcqFdrGdsHdtIduJevKewLexMeyNeyOimRmbUqRWuGZy5\ `xI7uJ9sJAqKBoKCmLDkLEiMFgMGdNHbNI`OJZOKXPLVPMTQNR\ QOOQORTMUWKXZJ_aHbdGefKhiUplczzbqmpsoprmprlprkpqjp\ qimqmczlUzkTzzWzzZzhaogcnffneindlncneUcXKUOAKPDLPG\ MQINQLOQOPRQQRTRSVSSYTS`UTbVTeWzgXzdWzbWz`WzYVzXVz\ _VzbUzeUzhUzkTznTeqTftSgwShzSzzUzzWzzXzzZzz`zzazzc\ zzezzfzzhzzizzepzFrzHtzKvzMxzOzzQXzf4zw8ztCzrGzpKz\ nOzkSziVzgZzebzcfz`jzZnzX } frm:FinalDivideBrot { ; Jim Muth z=(0,0), c=pixel, a=-(real(p1)-2), esc=(real(p2)+16), b=imag(p1)+0.00000000000000000001: z=(-b)*(z*z*fn1(z^(a)+b))-c |z| < esc } END PARAMETER FILE=========================================
participants (1)
-
Jim Muth