Latoocarfian parameters (last part)
For what it's worth, here is the rest of the bunch of the Latoocarfian parameters... Gerald ;------------------ Start of PAR --------------------- Number_31 { ; reset=2001 type=latoocarfian function=cos/sin/sin/cos corners=-4.953885/4.521355/-3.675321/3.431109 params=-1/-1/2/-2 float=y maxiter=1000 colors=@chroma.map } Number_32 { ; reset=2001 type=latoocarfian function=sin/cos/cos/sin corners=-6.870226/6.437695/-5.112576/4.868364 params=1/1/3/-3 float=y maxiter=1000 colors=@chroma.map } Number_33 { ; reset=2001 type=latoocarfian function=asin/sin/asin/sin corners=-5.681818/5.681818/-4.261364/4.261364 params=3.14159265358979/3.14159265358979/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_34 { ; reset=2001 type=latoocarfian function=sin/asin/sin/asin corners=-5.126411/6.237226/-1.816774/6.705953 params=3.14159265358979/3.14159265358979/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_35 { ; reset=2001 type=latoocarfian function=sin/asin/sin/asin corners=-5.737359/5.626277/-1.816774/6.705953 params=2.71828182845905/3.14159265358979/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_36 { ; reset=2001 type=latoocarfian function=sin/acos/sin/acos corners=-13.02041/0.1814591/-1.771725/8.129679 params=2.71828182845905/3.14159265358979/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_37 { ; reset=2001 type=latoocarfian function=cos/asin/cos/asin corners=-3.924439/-2.621505/2.5883915/3.5655919 params=2/2/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_38 { ; reset=2001 type=latoocarfian function=cos/asin/cos/asin corners=-5.015268/-1.530677/1.77027/4.383713 params=2.71828182845905/2.71828182845905/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_39 { ; reset=2001 type=latoocarfian function=acos/sin/acos/sin corners=-5.120538/1.324287/0.6601826/5.493801 params=2.71828182845905/2.71828182845905/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_40 { ; reset=2001 type=latoocarfian function=acos/sin/acos/sin corners=-3.975715/7.109383/-2.655415/5.658409 params=2/2/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_41 { ; reset=2001 type=latoocarfian function=acos/cos/acos/sin corners=-3.975715/7.109383/-2.655415/5.658409 params=2/2/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_42 { ; reset=2001 type=latoocarfian function=cos/asin/sin/acos corners=-10.72341/10.51473/-4.929214/10.99939 params=2/2/-2/2 float=y maxiter=1000 colors=@chroma.map } Number_43 { ; reset=2001 type=latoocarfian function=cos/asin/sin/acos corners=-3.351484/3.50045/-1.772775/3.366175 params=2/2/-1/0.5 float=y maxiter=1000 colors=@chroma.map } Number_44 { ; reset=2001 type=latoocarfian function=acos/sin/cos/acos corners=-2.435012/5.283331/-1.395576/4.393181 params=2/2/1/1 float=y maxiter=1000 colors=@chroma.map } Number_45 { ; reset=2001 type=latoocarfian function=acos/sin/cos/acos corners=-1.236156/4.537164/-1.194501/3.135489 params=2/1/1/1 float=y maxiter=1000 colors=@chroma.map } Number_46 { ; reset=2001 type=latoocarfian function=acos/sin/cos/acos corners=-2.859903/6.16091/-1.930376/4.835234 params=3/1/1/1 float=y maxiter=1000 colors=@chroma.map } Number_47 { ; reset=2001 type=latoocarfian function=acos/sin/cos/acos corners=-5.692019/8.993026/-2.515938/8.497845 params=3/2/2/2 float=y maxiter=1000 colors=@chroma.map } Number_48 {;a and b control the Lissajous coefficients ; reset=2001 type=latoocarfian function=acos/sin/cos/acos corners=-2.591823/5.749282/-1.572917/4.682912 params=3/2/2/1 float=y maxiter=1000 colors=@chroma.map } Number_49 { ; reset=2001 type=latoocarfian function=acos/sin/sin/log corners=-6.161078/9.721416/-8.4665/3.44537 params=1/1/1/1 float=y maxiter=1000 colors=@chroma.map } Number_50 { ; reset=2001 type=latoocarfian function=acos/sin/sin/cos corners=-2.755082/5.694404/-3.349552/2.987563 params=2/2/2/1 float=y maxiter=1000 colors=@chroma.map } Number_51 { ; reset=2001 type=latoocarfian function=acos/sin/sin/cos corners=-3.592511/6.331539/-3.86708/3.575958 params=1/2/2/1 float=y maxiter=1000 colors=@chroma.map } ;------------------- End of PAR -----------------------
Lee H. Skinner wrote:
Gerald,
For what it's worth, here is the rest of the bunch of the Latoocarfian parameters...
Interesting fractal. But #37 gives me a blank screen!
On this one, I got two darkish pink squares (with a little blue), each with a grid like pattern on them. One is positioned near the center of the screen and is about 1/3 the size of the screen. The other is less than half that size and is positioned at the lower lefthand corner of the larger one. Sincerely, P.N.L. ------------------------------------------------- http://home.att.net/~Paul.N.Lee/PNL_Fractals.html http://www.Nahee.com/Fractals/
Paul,
On this one, I got two darkish pink squares (with a little blue), each with a grid like pattern on them. One is positioned near the center of the screen and is about 1/3 the size of the screen. The other is less than half that size and is positioned at the lower lefthand corner of the larger one. <<
Not for me. I'm using Fractint (not float only) version 20.03. All the other 50 latoocarfians compute just fine. Number_37 { ; reset=2001 type=latoocarfian function=cos/asin/cos/asin corners=-3.924439/-2.621505/2.5883915/3.5655919 params=2/2/-2/2 float=y maxiter=1000 colors=@chroma.map } calculation time: 0:00:00.00 1000's of points: 3 of 1024000 The screen shows no points whatsoever A mystery! Lee
Lee H. Skinner wrote:
Not for me. I'm using Fractint (not float only) version 20.03.
Now, is that the 20.0.3 version from December 1999?? Or is that the more up-to-date 20.3.0 version from this year??
calculation time: 0:00:00.00 1000's of points: 3 of 1024000 The screen shows no points whatsoever
A mystery!
It appears you may have found another bug to report, maybe an issue between FractInt and FractFlo. ;-} Sincerely, P.N.L. ------------------------------------------------- http://home.att.net/~Paul.N.Lee/PNL_Fractals.html http://www.Nahee.com/Fractals/
Paul,
Now, is that the 20.0.3 version from December 1999??
Or is that the more up-to-date 20.3.0 version from this year?? << The new one. In tab mode it identifies itslef as 20.03.
It appears you may have found another bug to report, maybe an issue between FractInt and FractFlo. <<
Perhaps. I overwrote my Fractflo executable a couple of days ago when I downloaded the full version. Lee
Jonathan Osuch wrote:
This one works fine at 1028x768, but breaks at 1600x1200.
That's why I haven't caught it, all were done in 1024x768. Breaks at 1600x1200 Disk Video (using XMS), too.
Someone should investigate this. 8-))
I'm sure a huge number of specialists at Fractint Inc will be appointed to the problem immediatly ;-) (Reminds me of the OpenWatcom user newsgroup, where time and again posters wonder why the compiler *still* is not ANSI C++ compliant, why there are all these C99 features missing etc, oblivious to the fact only a handful of programmers are working at the project - in their spare time and for free.) Regards, Gerald
Hi Jonathan, At 18:37 06/02/2004 -0600, you wrote:
On Thursday 05 February 2004 11:09 pm, Lee H. Skinner wrote:
Interesting fractal. But #37 gives me a blank screen!
This one works fine at 1028x768, but breaks at 1600x1200. Someone should investigate this. 8-))
same problem with the ´ifs´ ..
Jonathan
cheers, Guy
ShortCircuit { ; Looks like printed circuit board. reset=2003 type=latoocarfian function=sin/flip/cos/asin passes=d center-mag=0.130532/3.43296/1.399117/1.0815 params=2/2/2/2 float=y maxiter=40000 inside=0 hertz=37 sound=y/fm showorbit=yes } I went into this thing with my own numbers, but it seems to thrive on functions. Anybody know the definition of an inverse hyperbolic cotangent? That would be acoth(z) if FRACTINT had it. The x and y sound very different in this (even if you don't slow them down), but zed is pretty flat, and all three are pretty flat with the speaker. I wonder how they'd sound in AM synthesis. I think that's what SOX calls it's "RAW" format, so I might actually do left=x and right=y myself, someday. Of course, I wouldn't mind inspiring the action. 8-)
----- Original Message ----- From: "SherLok Merfy" <brewhaha@freenet.edmonton.ab.ca> To: "Fractint and General Fractals Discussion" <fractint@mailman.xmission.com> Sent: Wednesday, February 11, 2004 10:38 AM Subject: [Fractint] Eerie Sounding Square (latoocarfian)
I went into this thing with my own numbers, but it seems to thrive on functions. Anybody know the definition of an inverse hyperbolic cotangent? That would be acoth(z) if FRACTINT had it.
Just Google it. It's all there. John W.
participants (7)
-
Gerald K. Dobiasovsky -
Guy Marson -
John Wilson -
Jonathan Osuch -
Lee H. Skinner -
Paul N. Lee -
SherLok Merfy