Here is an animation of a fractal I found back in 2012. The fractal mixes z * (cosh(z) - 1) and z * z * sinh(z) at locations -1 and +1. Varying the locations of the two components causes the tendril arms to be more or less curled. The animation moves the locations by changing the parameters p3 and p4 from -1.1 to -0.8 and +1.1 to +0.8. Moving the component locations also causes the center of the desired area to move so the animation moves the fractal center to follow that as well. To keep the render time reasonable I made the movie only 5 seconds long (61 frames). It still took 1.5 hours to render. Here is a link to the movie (2.5 MB): http://dl.dropboxusercontent.com/u/33642054/image/pr_3cosh-3sinh_F.mov Here is a link to an image at about the 1/3 point of the movie at locations -1 and +1: http://dl.dropboxusercontent.com/u/33642054/image/pr_3cosh-3sinh_F_640_5.jpg The FractInt compatible PAR file for the image is: TanglingTendrils { ; Exported from Fracton. reset=2004 type=formula formulafile=fracton.frm formulaname=F_20160309_1314 passes=1 float=y center-mag=0.008301665151149345/0.1582340776519129\ /566.2672882912181/1/0/0 params=-1/-1/0/4/-1/0/1/0/0/0 maxiter=2000 inside=0 periodicity=6 colors=000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O\ 40C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40\ C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C1\ 0000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C100\ 00C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000\ C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C1\ 0O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O\ 40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40\ ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA\ 0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0h\ I0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0\ oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS\ 0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0u\ a0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0\ ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0ym\ 0zy0ym0ua0oS0hI0ZA0O40C10 } frm:F_20160309_1314 { ; Similar to the parallel resistance formula a=real(p1),b=real(p2),d=imag(p1),f=imag(p2), z=0,c1=pixel-p3,c2=pixel-p4: z=1/(1/(a*z*(cosh(z)-1)+c1)+1/(d*z*z*sinh(z)+c2)), |z|<100 } -- Mike Frazier www.fracton.org
That's rather fascinating , looks like mud flowing down a river or something a bit more organic. On 10/03/2016 09:49, Mike Frazier wrote:
Here is an animation of a fractal I found back in 2012. The fractal mixes z * (cosh(z) - 1) and z * z * sinh(z) at locations -1 and +1. Varying the locations of the two components causes the tendril arms to be more or less curled. The animation moves the locations by changing the parameters p3 and p4 from -1.1 to -0.8 and +1.1 to +0.8. Moving the component locations also causes the center of the desired area to move so the animation moves the fractal center to follow that as well.
To keep the render time reasonable I made the movie only 5 seconds long (61 frames). It still took 1.5 hours to render.
Here is a link to the movie (2.5 MB):
http://dl.dropboxusercontent.com/u/33642054/image/pr_3cosh-3sinh_F.mov [1]
Here is a link to an image at about the 1/3 point of the movie
at locations
-1 and +1:
http://dl.dropboxusercontent.com/u/33642054/image/pr_3cosh-3sinh_F_640_5.jpg [2]
The FractInt compatible PAR file for the image is:
TanglingTendrils { ; Exported from Fracton.
reset=2004 type=formula formulafile=fracton.frm formulaname=F_20160309_1314 passes=1 float=y
center-mag=0.008301665151149345/0.1582340776519129
/566.2672882912181/1/0/0
params=-1/-1/0/4/-1/0/1/0/0/0 maxiter=2000
inside=0 periodicity=6
colors=000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O
40C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40
C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C1
0000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C100
00C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000
C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C1
0O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O
40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40
ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA
0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0h
I0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0
oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS
0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0u
a0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0
ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0ym
0zy0ym0ua0oS0hI0ZA0O40C10 }
frm:F_20160309_1314 { ; Similar to
the parallel resistance formula
a=real(p1),b=real(p2),d=imag(p1),f=imag(p2),
z=0,c1=pixel-p3,c2=pixel-p4:
z=1/(1/(a*z*(cosh(z)-1)+c1)+1/(d*z*z*sinh(z)+c2)),
|z|
Links: ------ [1] http://dl.dropboxusercontent.com/u/33642054/image/pr_3cosh-3sinh_F.mov [2] http://dl.dropboxusercontent.com/u/33642054/image/pr_3cosh-3sinh_F_640_5.jpg
participants (2)
-
Mike Frazier -
sciwise@ihug.co.nz