After reading the formula name of today's fractal (hermanm_man-cart) I realized
I had the pleasure of making the aquaintance of Herman Minibrot of the south-side Minibrots.
For an instant encounter with Mr. Minibrot go to http://maxitersfractalfollies.blogspot.com
no invitation required.
fract335.gif { ; I like the colors
; blank
; calctime 0:08:07.84
; created Jul 28, 2010
; Fractint Version 2004 Patchlevel 9
reset=2004 type=formula formulafile=kerrym.frm
formulaname=hermanm_man-cart
center-mag=-1.98717456210925500/-0.00365303064774690/726.036/1/-97.49999\
99999995168/3.88578058618804789e-016
params=3/2/0.9481490524002808/0.4500259407330546/2.049745170445875/-0.59\
7888119144261 float=y maxiter=1500 inside=0 outside=atan
colors=000503504604705805806907A07B08B08C09D1AE1AF1BF1BG1CH1CI1DI1EJ1EK1\
FL1FL1GM1GN1HO2IN2KM2NK2QJ2TH2VG2YE2`D2cB1fA1i81l71n51q41t21w00z03z07z0B\
z0Fz0Jz0Nz0Rz0Vz0Zz0bz0fz0jz0nz0rz0vz0zz0xz0vz0tz0rz0pz0nz0lz0jz0hz0fz0d\
z0bz0`z0Zz0Xz0Wz0Uz0Sz0Qz0Oz0Mz0Kz0Iz0Gz0Ez0Cz0Az08z06z04z02z00z00y10x20\
v20u30s40r50p50o61n71l81k91i91hA1gB1eC1dC1bD1aE1_F1ZF1YG1WH1VI1TJ2SJ2RK2\
PL2OM2MM2LN2JO2IM2GJ2EH2CE1AC18916614312000101302503605806A07C19D19E1AF1\
AF1BG1BH1CI1DI1DJ1EK1EL1FL1FM1GN1HO2IO2JQ2IS2HV2GX2F_2Da2Cd2Bf2Ah19k18m1\
7p15r14u13w12z00z20z50z70zA0zC0zF0zH0zK0zM0zP0zR0zU0zX0zZ0za0zc0zf0zh0zk\
0zm0zp0zr0zu0zw0zz0zw0zu0zr0zo0zl0zj0zg0zd0za0z_0zX0zU0zS0zP0zM0zJ0zH0zE\
0zB0z80z60z30z00x01v02s03q04n06l07i08g19e1Ab1B`1CY1EW1FT1GR1HO2JN2IM2HK2\
GJ2FH2DG2CE2BD2AB19A18817715514413212000000101201302403
}
frm:hermanm_man-cart { ; Kerry Mitchell 16feb98
;
; real(p1) = z exponent (use integer >= 2; m=n-1)
; imag(p1) = g exponent (integers)
; p2 = alpha
; real(p3) = critical point selector (>0 for positive root)
; imag(p3) = unused (<0 for negative root)
; use decomp=256
; zero and infinity bailouts hardcoded to 1e-6, 1e6
; coloring speed hardcoded to 4
;
c=pixel, iter=1, n=real(p1), m=imag(p1), nfac=2*n-1
maxr=1e6, minr=1/maxr, speed=4*pi/128, alpha=p2
oln=1/log(n), fac=log(0.5*log(maxr))
c2=sqr(c), hypnum=sqr(n)+sqr(m), pn=1
hypden=sqr(n-m), hypfac=hypnum/hypden
if (real(p3)<0)
pn=-1
end if
if (real(c2)>hypfac)
pn=-pn
end if
if (imag(c)<0)
pn=-pn
end if
afac=c*n, bfac=c2*(n-m)+(n+m), cfac=c*n
d=sqrt(bfac*bfac-4*afac*cfac)
z=(bfac+pn*d)/(2*afac)
:
g=(z-c)/(1-c*z), z=alpha*z^n*g^m
iter=iter+1, r=|z|
;
; orbit trap around 0
; renormalize iteration count via decomp angle
; set "iteration done" flag (iter=-1)
;
if (r<minr)
angle=(iter+oln*(fac-log(log(cabs(z)))))*speed
z=cos(angle)+flip(sin(angle))
iter=-1
end if
;
; orbit trap around infinity
; renormalize iteration count via decomp angle
; add pi to angle to separate from 0 orbit trap
; set "iteration done" flag (iter=-1)
;
if (r>maxr)
angle=(iter+oln*(fac-log(log(cabs(z)))))*speed
angle=angle+pi
z=cos(angle)+flip(sin(angle))
iter=-1
end if
iter>0
}
Roger Alexander
Turn down-time into play-time with Messenger games Play Now!