FOTD -- June 14, 2010 (Rating 8)
 
Fractal visionaries and enthusiasts:
 
This is a test to see how well AOL works with the FOTD.
 
Today's blindingly fast image is surprisingly simple, yet it
delivers more than seems possible in a mere 10 seconds.  In fact
it is one of the best quartic minibrots I have ever seen.
 
The parent fractal is a Mandelbrot set caught well along the way
of morphing into the Z^4+C Mandeloid.  Today's image lies quite
deep on the negative X-axis of the parent fractal.
 
The rating of an 8 is justified.  Though the image is little
more than a quartic minibrot with radiating arms, it has a
certain something that sets it apart from the crowd.
 
The name "Pint-Sized Quartic" is a play on words that refers to
the unusually large magnitude of the image and the corresponding
small size of the minibrot.
 
The calculation time of 10 seconds hardly seems possible, but
this is how fast the image runs on my optimized, fractal-dedica-
ted 2000mhz computer.
 
The trip to see the finished image on the FOTD web site at:
 
       <http://www.Nahee.com/FOTD/>
 
will take a bit longer, but the minor hassle of setting up and
running the parameter file will be eliminated.
 
A mix of clouds and sun, oppressive humidity and a temperature
of 88F 31C made things pretty uncomfortable here at Fractal
Central on Sunday.  A brief but heavy rain shower just after
noon added to the unpleasantness.  The fractal cats suffered no
unpleasantness however as they passed the day sleeping on the
cool floor.
 
My day was about average; the same is true for FL.  Unless
something goes wrong, the next FOTD will be posted in 24 hours. 
Until then, take care, and after the world ends, will the Mandel-
brot set still exist?
 

Jim Muth
jamth@mindspring.com
jimmuth@aol.com
 

START PARAMETER FILE=======================================
 
Pint-Sized_Quartic { ; time=0:00:10.26-SF5 on P4-2000
  reset=2004 type=formula formulafile=basicer.frm
  formulaname=FinDivBrot-2 function=recip
  center-mag=-1.188028881200462/0/4.56327e+011/1/180
  params=4/-4/0/0 float=y maxiter=1500 inside=0
  symmetry=xaxis periodicity=6 mathtolerance=0.05/1
  colors=000dKdoMzlKoiIdgGUdEJnZvbD8_IAYNBVSCTWEQ`FO\
  eGDj1MiHZvaXq_WmYUiW7Ni7V2WfRTeVQdZNcbLcfIbjFanC`r\
  4cyA`vGZtMXrSVoYTmmOPiPXfQcbRkdSxbRvaRt8BaAEcCGeEI\
  gGKiKMkOOmSRoWWo_`qcfsgoulyzzzzyszuovqirncmjYhfRcc\
  La_F_U2LU6SX9YTCUU7UUBcQFiGJoRPz8Uz7Zz7cz7hz7mzNYh\
  KYeaZeKZdaZdKUdaUdKUcaUcKUcaUcKUbaUbKUbaUbKUammamm\
  ammamm`mm`mm`mm`mm_mm_mm_mm_mmZmmZmmZmmZmmYaeYaeYa\
  eYaeXafXafXafXafWagWagWagWagVagEahVahVahVzhUziUziU\
  ziUziTzjTzjTzjTzjSzkSzkSzkSzkRzkRzlRzlRzlQzmVzmWzm\
  WzmWzmYzmRzmKzmPzmUzmZzmczmwzmrzmmzmh_mz_mz_mz_mza\
  mzbmzcmzdmzemzfmzumzgmzUmzGmz2mz3mz4mz5mz6mz7mzomz\
  omz5mz7mz9mzBmzDmzFmzHmzMmzKmzImzGzPCzIDzNEzSFzXGz\
  a5ztHzeSzSoz4hz9bzEXzJRzOIzRKzTNzVPzWSzYUz_5z8EzIN\
  zRWz`jzegzgezhczi`zjZzkTzwXzl_zaczRozJfzHZzGRzFGza\
  JzEPzGUzI_zKdzMjzOozQiz4tzRlzTezVmzmZzXEzTHzPJzLLz\
  HNzEPzARz6Tz3WzGYzTUzf_ze }
 
frm:FinDivBrot-2   { ; Jim Muth
z=(0,0), c=pixel, a=-(real(p1)-2),
esc=(real(p2)+16), b=imag(p1):
z=(b)*(z*z*fn1(z^(a)+b))+c
|z| < esc }
 
END PARAMETER FILE=========================================