Today's post is another newton mandelbrot mash-up. Ready made at http://maxitersfractalfollies.blogspot.com
fractt517.gif { ; another newton-mandelbrot mash-up
; blank
; calctime 0:09:56.44
; created Nov 15, 2010
; Fractint Version 2004 Patchlevel 10
reset=2004 type=formula formulafile=_m.frm
formulaname=mandel-newton-2 passes=1
center-mag=-0.61577/4.44089e-016/0.7788162 params=12/0 float=y
maxiter=1500 inside=0 periodicity=0
colors=00000000100300400600800900B00C00E00G00H00J00K00M00O00P00R00T00U00\
W00X00Z00`00a00c00d00f00h00i00k00m01m03m04n06n07o09o0Ao0Cp0Ep0Fq0Hq0Iq0K\
r0Lr0Ns0Ps0Qs0St0Tt0Vu0Wu0Yu0Zv0`v0bw0cw0ew0fx0hx0iy0ky0mz1mz3mz5nz7nz9o\
zBozDozFpzHpzJqzLqzNqzPrzRrzTszVszXszZtz`tzbuzduzfuzhvzjvzlwznwzpwzrxztx\
zvyzxyzzzzyzzxzzwzzuzztzzszzqzzpzzozzmzzlzzkzzizzhzzgzzezzdzzczzbzz`zz_z\
zZzzXzzWzzVzzTzzSzzRzzPzzOzzNzzLzzKzzJzzIzzGzzFzzEzzCzzBzzAzz8zz7zz6zz4z\
z3zz2zz0zz0yz0xz0wz0uz0tz0sz0qz0pz0oz0mz0lz0kz0iz0hz0gz0ez0dz0cz0bz0`z0_\
z0Zz0Xz0Wz0Vz0Tz0Sz0Rz0Pz0Oz0Nz0Lz0Kz0Jz0Iz0Gz0Fz0Ez0Cz0Bz0Az08z07z06z04\
z03z02z00z00y00x00w00v00u00t00s00r00q00p00o00n00m00l00k00j00i00h00g00f00\
e00d00c00b00a00`00_00Z00Y00X00W00V00U00T00S00R00Q00P00O00N00M00L00K00J00\
I00H00G00F00E00D00C00B00A009008007006005004003002000000
}
frm:mandel-newton-2 {; Sylvie Gallet [101324,3444], 1995-1996
; Formula designed for Fractint 19.2 and modified for Fractint 19.3
limit = real(p1), test0 = 1, test3=0, iter = 1
z = pixel, c = z, b1 = 16
rad = 6, pix = (10*pixel+(8.0,-5))*(-0.1,-0.95)
center = (1.0,0.1), zn = center+rad/(pix-center), b2 = 0.0001 :
test0 = 1-test0, test1 = (iter<limit), test2=(iter!=limit)
z = (z-zn)*test2 + zn
z2 = z*z, z4 = z2*z2, z1 = (z4*z-1)/(4*z4 + (z==0))
z = (z2+c)*test1 + (z-z1)*(1-test1)
test3 = (test3 || (|z|>b1))
z = z*(1-(test3 && test0 && test1))
iter = iter+1
((|z|<=b1)*test1) || ((|z1|>=b2)*(1-test1))
;SOURCE: gallet-n.frm
}
Roger Alexander