The The Gerald Dobiasovsky / Russ Walsmith (morph + pirouette) viddie; 3D grayscale, is re-posted: http://www.fractal-animation.net/morph_x2.zip 800x600 AVI, 30 sec, 6.5 MEG It is centered better now, you can see everything better. Rendered at higher res - 800x600 also. At 6.5 meg, this is only for serious fractal explorers. Grayscale is hard enuf to see as it is - you need maximum detail in the viddie / pix. Compressing to MPEG4 (WMV) format causes unacceptable loss in detail and resolution, even if the file is much smaller. AND the Russ Walsmith "redesigned T-C formula" mentioned recently is currently in the works; it looks radically completely different than the other one, the 1st images kinda look like a 25th century small office park seen from above, with silver mod buildings and trees etc. You can check out the 1st image in the animation: ;;;;;;;;;;;;;;;;;;;;;;;;;;;START PAR::::::::::::::::::::::::::::::::::::::::::: test { ; 1st image in animation, 17 min on P2-300 reset=2004 type=formula formulafile=fromfile.frm formulaname=t_c_morph passes=3 center-mag=-0.343038/-0.186895/0.4524726 params=0/-50/-1.5/1.5/2/0/0/4/150/253 float=y maxiter=2000000000 outside=summ periodicity=0 colors=000100000000PPPzzzyzzzyzzyyyyyxyyyxzyxxxxxwxxxwyxwwwwwvwwwvxwvvvv\ vuvvvuwvuuuuutuuutvutttttstttsutsssssrsssrtsrrrrrqrrrqsrqqqqqpqqqprqpppp\ popppoqpooooonooonponnnnnmnnnmonmmmmmlmmmlnmlllllklllkmlkkkkkjkkkjlkjjjj\ jijjjikjiiiiihiiihjihhhhhghhhgihgggggfgggfhgfffffefffegfeeeeedeeedfedddd\ dcdddcedcccccbcccbdcbbbbbabbbacbaaaaa`aaa`ba`````_```_a`_____Z___Z`_ZZZZ\ ZYZZZY_ZYYYYYXYYYXZYXXXXXWXXXWYXWWWWWVWWWVXWVVVVVUVVVUWVUUUUUTUUUTVUTTTT\ TSTTTSUTSSSSSRSSSRTSRRRRRQRRRQSRQQQQQPQQQPRQPPPPPOPPPOQPOOOOONOOONPONNNN\ NMNNNMONMMMMMLMMMLNMLLLLLKLLLKMLKKKKKJKKKJLKJJJJJIJJJIKJIIIIIHIIIHJIHHHH\ HGHHHGIHGGGGGFGGGFHGFFFFFEFFFEGFEEEEEDEEEDFEDDDDDCDDDCEDCCCCCBCCCBDCBBBB\ BABBBACBAAAAA9AAA9BA9999989998A98888878887987777767776876666656665765555\ 5455546544444344435433333233324322222122213211111011102 } frm:T_C_morph {;periodicity=no, outside=summ ;maxit > p5real*(p5imag+1) ;-------------------------------------------- ;p1real: Rotation about x-axis (1st rotation) ;p1imag: Rotation about y-axis (2nd rotation) ;p2real: Far clipping plane ;p2imag: Near clipping plane ;p3real: Constant coefficient ;p3imag: ;p4real: z1(0) ;p4imag: Bailout ;p5real: Maxiter per slice ;p5imag: Number of slices - 1 ;-------------------------------------------- ; bailout = imag(p4), tiefnum = imag(p5) delta = (real(p2)-imag(p2))/tiefnum tmp = pi/180 rotXax = exp(flip(real(p1)*tmp)), rotYax = exp(flip(imag(p1)*tmp)) ; HPixXY = rotYax VPixZ = real(rotXax) VPixXY = flip(conj(rotYax)) NXY = VPixZ*VPixXY NZ = imag(conj(rotXax)) VPixXY = -NZ*VPixXY ; tmp = NXY*imag(p2) + HPixXY*real(pixel) + VPixXY*imag(pixel) cx = cx0 = real(tmp), cy = cy0 = imag(tmp) cz = cz0 = NZ*imag(p2) + VPixZ*imag(pixel) ;HPixZ -> 0 tmp = NXY*delta, dcx = real(tmp), dcy = imag(tmp) dcz = NZ*delta x1 = 0, y1 = 0, z1 = real(p4) d1 = sqrt(real(p3)), d2 = sqrt(1-real(p3)) d3 = d1 + d2 j = m = i = 0: a = sqr(x1) + 2*y1*z1 b = sqr(z1) + 2*x1*y1 c = sqr(y1) + 2*x1*z1 x1 = d1*a + d2*c + cx y1 = d3*b + cy, z1 = d2*a + d1*c + cz IF (bailout >= (sqr(x1)+sqr(y1)+sqr(z1))) i = i + 1 ELSE i = 0 m = m + 1 cx = cx0 = cx0 + dcx cy = cy0 = cy0 + dcy cz = cz0 = cz0 + dcz x1 = 0, y1 = 0, z1 = real(p4) ENDIF z = m - j j = j + 1 tiefnum >= m && p5 >= i } ;;;;;;;;;;;;;;;;;;;;;;;;;;;END PAR::::::::::::::::::::::::::::::::::::::::::: Stay Cool JoTz