Here is another fractal using the parallel resistor formula. The basic formula combines any two powers of z. It seems to make a fractal with pretty much any coefficients you pick. I wondered what would happen if I substituted a cosine for one of the z terms. The cosine seems to add a lot of intricate detail. Here is a link to a web page with an image and a description of what I found:

http://www.fracton.org/fmlposts/mixing_cosine.html

I will also list the PAR file here for people collecting them from the mail list:

Mixing_Cosine { ; Exported from Fracton.
 reset=2004 type=formula formulafile=fracton.frm
 formulaname=F_20121102_1156 passes=1 float=y
 center-mag=0.5475442691084866/-2.413982470836851e-\
 06/3333.333375/1/0/0
 params=-1/1/0/4/-1/0/1/0/0/0 maxiter=2000
 inside=0 periodicity=6
 colors=000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O\
 40C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40\
 C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C1\
 0000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C100\
 00C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000\
 C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C1\
 0O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O\
 40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40\
 ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA\
 0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0h\
 I0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0\
 oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS\
 0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0u\
 a0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0\
 ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0ym\
 0zy0ym0ua0oS0hI0ZA0O40C10 }

frm:F_20121102_1156 {
; Similar to the parallel resistance formula
a=real(p1),b=real(p2),d=imag(p1),f=imag(p2),
z=0,c1=pixel-p3,c2=pixel-p4:
z=1/(1/(a*cos(z)+c1)+1/(d*(z^f)+c2)),
|z|<100
}


--
Mike Frazier
www.fracton.org