Here is another fractal using the parallel resistor formula. The basic formula combines any two powers of z. It seems to make a fractal with pretty much any coefficients you pick. I wondered what would happen if I substituted a cosine for one of the z terms. The cosine seems to add a lot of intricate detail. Here is a link to a web page with an image and a description of what I found:
I will also list the PAR file here for people collecting them from the mail list:
Mixing_Cosine { ; Exported from Fracton.
reset=2004 type=formula formulafile=fracton.frm
formulaname=F_20121102_1156 passes=1 float=y
center-mag=0.5475442691084866/-2.413982470836851e-\
06/3333.333375/1/0/0
params=-1/1/0/4/-1/0/1/0/0/0 maxiter=2000
inside=0 periodicity=6
colors=000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O\
40C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40\
C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C1\
0000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C100\
00C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000\
C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C1\
0O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O\
40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40\
ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA\
0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0h\
I0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0\
oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS\
0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0u\
a0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0\
ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0ym\
0zy0ym0ua0oS0hI0ZA0O40C10 }
frm:F_20121102_1156 {
; Similar to the parallel resistance formula
a=real(p1),b=real(p2),d=imag(p1),f=imag(p2),
z=0,c1=pixel-p3,c2=pixel-p4:
z=1/(1/(a*cos(z)+c1)+1/(d*(z^f)+c2)),
|z|<100
}
--
Mike Frazier
www.fracton.org