While toying with the Lyapunov Mandelbrot formula recently posted by Morgan Owens, I noticed that the formula produces images virtually identical to those drawn by the Fractint type=hypercomplex Mandelbrot formula. I have included two parameter files, one of which uses the Lyapunov Mandelbrot formula, while the other uses the hypercomplex Mandelbrot formula, yet the two files draw identical images. Perhaps one of the math experts on the list can explain what is happening here. . . . Jim Muth jamth@mindspring.com START PARAMETER FILE======================================= Lyapunov { reset=2002 type=formula formulafile=allinone.frm formulaname=LyapunovMandel center-mag=-1.07668/7.77156e-016/1.344086 params=0/0/0/1/16/0 float=y maxiter=500 inside=0 logmap=yes periodicity=0 sound=off colors=00000e0e00eee00e0eeL0eeeLLLLLzLzLLzzzLLzLzz\ zLzzz000555888BBBEEEHHHKKKOOOSSSWWW___ccchhhmmmsss\ zzz00zG0zV0zj0zz0zz0jz0Vz0Gz00zG0zV0zj0zz0jz0Vz0Gz\ 00z00zG0zV0zj0zz0jz0Vz0GzVVzbVzjVzrVzzVzzVrzVjzVbz\ VVzbVzjVzrVzzVrzVjzVbzVVzVVzbVzjVzrVzzVrzVjzVbzhhz\ lhzqhzuhzzhzzhuzhqzhlzhhzlhzqhzuhzzhuzhqzhlzhhzhhz\ lhzqhzuhzzhuzhqzhlz00S70SE0SL0SS0SS0LS0ES07S00S70S\ E0SL0SS0LS0ES07S00S00S70SE0SL0SS0LS0ES07SEESHESLES\ OESSESSEOSELSEHSEESHESLESOESSEOSELSEHSEESEESHESLES\ OESSEOSELSEHSKKSMKSOKSQKSSKSSKQSKOSKMSKKSMKSOKSQKS\ SKQSKOSKMSKKSKKSMKSOKSQKSSKQSKOSKMS00G40G80GC0GG0G\ G0CG08G04G00G40G80GC0GG0CG08G04G00G00G40G80GC0GG0C\ G08G04G88GA8GC8GE8GG8GG8EG8CG8AG88GA8GC8GE8GG8EG8C\ G8AG88G88GA8GC8GE8GG8EG8CG8AGBBGCBGDBGFBGGBGGBFGBD\ GBCGBBGCBGDBGFBGGBFGBDGBCGBBGBBGCBGDBGFBGGBFGBDGBC\ G000000000000000000000000 } Hypercomplex { reset=2002 type=hypercomplex function=sqr center-mag=-0.5759/7.77156e-016/1.344086 params=0/0/0/0.5 float=y maxiter=500 bailout=7 inside=0 logmap=yes periodicity=0 sound=off colors=00000e0e00eee00e0eeL0eeeLLLLLzLzLLzzzLLzLzz\ zLzzz000555888BBBEEEHHHKKKOOOSSSWWW___ccchhhmmmsss\ zzz00zG0zV0zj0zz0zz0jz0Vz0Gz00zG0zV0zj0zz0jz0Vz0Gz\ 00z00zG0zV0zj0zz0jz0Vz0GzVVzbVzjVzrVzzVzzVrzVjzVbz\ VVzbVzjVzrVzzVrzVjzVbzVVzVVzbVzjVzrVzzVrzVjzVbzhhz\ lhzqhzuhzzhzzhuzhqzhlzhhzlhzqhzuhzzhuzhqzhlzhhzhhz\ lhzqhzuhzzhuzhqzhlz00S70SE0SL0SS0SS0LS0ES07S00S70S\ E0SL0SS0LS0ES07S00S00S70SE0SL0SS0LS0ES07SEESHESLES\ OESSESSEOSELSEHSEESHESLESOESSEOSELSEHSEESEESHESLES\ OESSEOSELSEHSKKSMKSOKSQKSSKSSKQSKOSKMSKKSMKSOKSQKS\ SKQSKOSKMSKKSKKSMKSOKSQKSSKQSKOSKMS00G40G80GC0GG0G\ G0CG08G04G00G40G80GC0GG0CG08G04G00G00G40G80GC0GG0C\ G08G04G88GA8GC8GE8GG8GG8EG8CG8AG88GA8GC8GE8GG8EG8C\ G8AG88G88GA8GC8GE8GG8EG8CG8AGBBGCBGDBGFBGGBGGBFGBD\ GBCGBBGCBGDBGFBGGBFGBDGBCGBBGBBGCBGDBGFBGGBFGBDGBC\ G000000000000000000000000 } frm:LyapunovMandel { narg=real(p2) nmag=imag(p2) bailout=4*(real(p3)==0)+real(p3)*(real(p3)!=0) z0=c0=pixel z1=c1=pixel+nmag*(cos(narg)+(0,1)*sin(narg)) : z0=z0*z0+c0 z1=z1*z1+c1 cabs(z0-z1)<bailout } END PARAMETER FILE=========================================