In a prior post called Mixing Cosines I substituted a cosine term instead of the usual z to a power in the parallel resistor formula. The cosine added intricate detail to the fractal but if you looked around with this equation you probably noticed there were only z ^ 2 power minibrots in the fractal. Is it possible to increase the order of the minibrots without losing the intricate detail of the cosine? Here is a link to a web page with an image and a formula that attempts to do that:

http://www.fracton.org/fmlposts/cosines_of_three.html

The PAR file for the image is:

CosinesOfThree { ; Exported from Fracton.
 reset=2004 type=formula formulafile=fracton.frm
 formulaname=F_20121102_1610 passes=1 float=y
 center-mag=-0.3806336003340345/-3.816249585923092e\
 -14/53333334000/1/0/0
 params=-1/1/0/4/-1/0/1/0/0/0 maxiter=2000
 inside=0 periodicity=6
 colors=000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O\
 40C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40\
 C10000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C1\
 0000C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C100\
 00C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000\
 C10O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C1\
 0O40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O\
 40ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40\
 ZA0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA\
 0hI0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0h\
 I0oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0\
 oS0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS\
 0ua0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0u\
 a0ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0\
 ym0zy0ym0ua0oS0hI0ZA0O40C10000C10O40ZA0hI0oS0ua0ym\
 0zy0ym0ua0oS0hI0ZA0O40C10 }

frm:F_20121102_1610 {
; Similar to the parallel resistance formula
a=real(p1),b=real(p2),d=imag(p1),f=imag(p2),
z=0,c1=pixel-p3,c2=pixel-p4:
z=1/(1/(a*z*(cos(z)-1)+c1)+1/(d*(z^f)+c2)),
|z|<100
}


--
Mike Frazier
www.fracton.org