SciWise, Thanks for posting these formulas of Edward Montagues based on the M-set formula. I cleaned them up (removed trailing spaces, etc.) and added "frm:" in front of each formula -- as well as provided a set of parameter files that show each one's parent fractal. As SciWise says, most of the parent fractals are bland-looking. However, the parent PAR of: 160810dZ_SummFunc1 is odd looking. Also, you can dig/zoom deeper and find non-Mset looking areas: My PAR: 160810dZ_B shows a view out the negative X-axis of the "1st derivative of the Mandelbrot Series" that is non-M-set like. I'm just going to paste the whole 8KB PAR file containing the 5 image/formula specs below. You might have to do a bit of cleanup work if any lines get wrapped around, etc. The 5 PARM sets below were all together in one file successfully and are: 160810dZ_1st_Deriv 160810dZ_Phase 160810dZ_NormSumm 160810dZ_SummFunc1 160810dZ_B After fixing the formulas to Fractint's satisfaction and organizing their PAR files, I didn't have much time for exploring. I'm leaving that to you. Please let me know what you find. - Hal Lane ######################## # hallane@earthlink.net ######################## ------- START OF PAR FILE ----------------------- 160810dZ_1st_Deriv { ; 1st Deriv. of Mbrot Series. ; Edward Montague-1st Deriv. of Mandelbrot Series. ; Parent reset=2004 type=formula formulafile=fractint.frm formulaname=d1Mandelbrot passes=1 float=y center-mag=-0.52/0.0/0.5/1.0 params=1/0/-1/0/0/333/0/0/0/0 maxiter=10000 inside=0 outside=iter colors=000CpEAnG9mIDcLGVOJMRLOPNPMPRKRTITVFVWDXYBY\ Z9XiYXtuSloNdiIXbEPXCUYA_Z8d_6j`4pa2uaBq`Ll`Uh_ccZ\ cYbbSebNiaHlaCoa6ra1u`4p_7jZAeYE_YHVTJWOKWJLWENWAO\ W5PW1QW8UZGYaObdWfgcjjknmsrpzvryqrxmqwhqvcpu_ptVps\ RpmVmfYi_afUebOiZHlWBpS5sP5mO6gO6aN7WN8QN8KM9EM88K\ 89M9AN9BPACRADS89N66I53D408908F19K2AQ3BW4C`5Df6Ek6\ EoFKtNPzVUzbZzkczshztbzuYzvczwczzczzczzczfc7zf7zh8\ zgKzgKzfUzfczeczeczfczhcziczjwzzwzzwzzwzzwzzwzzwzz\ wzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwz\ zwzwwzwwzmwzmwzgwzcwzTwzRwzPwzOwzKwzHwzEwzBwz8wzFw\ zMwzTwz_wzfwzmwztwzzwzqwzhwzZwzQwzHwbUwZewVqwMiwMd\ wN_wNWwORwONVONUONUNMUNMTNMTNMTMLSMLSMLSMLSMLSLKRL\ KRKJRKJQKJQKJQKJQKJQKJPKJPJIPJIPJIOIHOIHOIHNIHeLTh\ GNYFINEDCD81D45O89YBAcBBiBCoBDuBNg9YU7hG5s34lB6fK8\ _TATaCNiEGrGAzILlQW_XfMdeLedLecKfbKfaKf`Kf`KfAlfBk\ hCijDhlEfnFeoHcqIbsFsADqC } frm:d1Mandelbrot(XAXIS) {; 1st Deriv of Mbrot Series. ; Edward Montague-First Derivative of Mandelbrot Series. x=pixel, z=1: z=2*x*z+1, x=x*x+pixel, |z|<1000000 } 160810dZ_Phase { ; Phase of Mandelbrot Series. ; Edward Montague-1st Deriv. of Mandelbrot Series. ; Parent reset=2004 type=formula formulafile=fractint.frm formulaname=p1Mandelbrot passes=1 float=y center-mag=-0.52/0.0/0.5/1.0 params=1/0/-1/0/0/333/0/0/0/0 maxiter=10000 inside=0 outside=iter colors=000CpEAnG9mIDcLGVOJMRLOPNPMPRKRTITVFVWDXYBY\ Z9XiYXtuSloNdiIXbEPXCUYA_Z8d_6j`4pa2uaBq`Ll`Uh_ccZ\ cYbbSebNiaHlaCoa6ra1u`4p_7jZAeYE_YHVTJWOKWJLWENWAO\ W5PW1QW8UZGYaObdWfgcjjknmsrpzvryqrxmqwhqvcpu_ptVps\ RpmVmfYi_afUebOiZHlWBpS5sP5mO6gO6aN7WN8QN8KM9EM88K\ 89M9AN9BPACRADS89N66I53D408908F19K2AQ3BW4C`5Df6Ek6\ EoFKtNPzVUzbZzkczshztbzuYzvczwczzczzczzczfc7zf7zh8\ zgKzgKzfUzfczeczeczfczhcziczjwzzwzzwzzwzzwzzwzzwzz\ wzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwz\ zwzwwzwwzmwzmwzgwzcwzTwzRwzPwzOwzKwzHwzEwzBwz8wzFw\ zMwzTwz_wzfwzmwztwzzwzqwzhwzZwzQwzHwbUwZewVqwMiwMd\ wN_wNWwORwONVONUONUNMUNMTNMTNMTMLSMLSMLSMLSMLSLKRL\ KRKJRKJQKJQKJQKJQKJQKJPKJPJIPJIPJIOIHOIHOIHNIHeLTh\ GNYFINEDCD81D45O89YBAcBBiBCoBDuBNg9YU7hG5s34lB6fK8\ _TATaCNiEGrGAzILlQW_XfMdeLedLecKfbKfaKf`Kf`KfAlfBk\ hCijDhlEfnFeoHcqIbsFsADqC } frm:p1Mandelbrot(XAXIS) {; Phase of Mandelbrot Series. ; Edward Montague-Phase of Mandelbrot Series. x = pixel y = 1 : y = 2*x*y+1 z = y/x x = x*x + pixel |z| < 1000000 } 160810dZ_NormSumm {;1st norm'd summation,MbrotSeries ; Edward Montague-1st normalized summation,Mbrot Series. ; Parent reset=2004 type=formula formulafile=fractint.frm formulaname=i1Mandelbrot passes=1 float=y center-mag=-0.52/0.0/0.5/1.0 params=1/0/-1/0/0/333/0/0/0/0 maxiter=10000 inside=0 outside=iter colors=000CpEAnG9mIDcLGVOJMRLOPNPMPRKRTITVFVWDXYBY\ Z9XiYXtuSloNdiIXbEPXCUYA_Z8d_6j`4pa2uaBq`Ll`Uh_ccZ\ cYbbSebNiaHlaCoa6ra1u`4p_7jZAeYE_YHVTJWOKWJLWENWAO\ W5PW1QW8UZGYaObdWfgcjjknmsrpzvryqrxmqwhqvcpu_ptVps\ RpmVmfYi_afUebOiZHlWBpS5sP5mO6gO6aN7WN8QN8KM9EM88K\ 89M9AN9BPACRADS89N66I53D408908F19K2AQ3BW4C`5Df6Ek6\ EoFKtNPzVUzbZzkczshztbzuYzvczwczzczzczzczfc7zf7zh8\ zgKzgKzfUzfczeczeczfczhcziczjwzzwzzwzzwzzwzzwzzwzz\ wzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwz\ zwzwwzwwzmwzmwzgwzcwzTwzRwzPwzOwzKwzHwzEwzBwz8wzFw\ zMwzTwz_wzfwzmwztwzzwzqwzhwzZwzQwzHwbUwZewVqwMiwMd\ wN_wNWwORwONVONUONUNMUNMTNMTNMTMLSMLSMLSMLSMLSLKRL\ KRKJRKJQKJQKJQKJQKJQKJPKJPJIPJIPJIOIHOIHOIHNIHeLTh\ GNYFINEDCD81D45O89YBAcBBiBCoBDuBNg9YU7hG5s34lB6fK8\ _TATaCNiEGrGAzILlQW_XfMdeLedLecKfbKfaKf`Kf`KfAlfBk\ hCijDhlEfnFeoHcqIbsFsADqC } frm:i1Mandelbrot(XAXIS) {; 1st norm'd summation,Mbrot Series. ; Edward Montague-First normalized summation of Mandelbrot Series. z = pixel s = 0 n = 1 : z = z*z+pixel s = s+z u = s/n n=n+1 |u| < 4 } 160810dZ_SummFunc1 {;1stSummation,func1,MbrotSeries ; Edward Montague-First summation of function 1 using Mandelbrot Series. ; Parent reset=2004 type=formula formulafile=fractint.frm formulaname=f1Mandelbrot passes=1 float=y center-mag=-0.52/0.0/0.25/1.0 params=1/0/-1/0/0/333/0/0/0/0 maxiter=10000 inside=0 outside=iter colors=000CpEAnG9mIDcLGVOJMRLOPNPMPRKRTITVFVWDXYBY\ Z9XiYXtuSloNdiIXbEPXCUYA_Z8d_6j`4pa2uaBq`Ll`Uh_ccZ\ cYbbSebNiaHlaCoa6ra1u`4p_7jZAeYE_YHVTJWOKWJLWENWAO\ W5PW1QW8UZGYaObdWfgcjjknmsrpzvryqrxmqwhqvcpu_ptVps\ RpmVmfYi_afUebOiZHlWBpS5sP5mO6gO6aN7WN8QN8KM9EM88K\ 89M9AN9BPACRADS89N66I53D408908F19K2AQ3BW4C`5Df6Ek6\ EoFKtNPzVUzbZzkczshztbzuYzvczwczzczzczzczfc7zf7zh8\ zgKzgKzfUzfczeczeczfczhcziczjwzzwzzwzzwzzwzzwzzwzz\ wzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwzzwz\ zwzwwzwwzmwzmwzgwzcwzTwzRwzPwzOwzKwzHwzEwzBwz8wzFw\ zMwzTwz_wzfwzmwztwzzwzqwzhwzZwzQwzHwbUwZewVqwMiwMd\ wN_wNWwORwONVONUONUNMUNMTNMTNMTMLSMLSMLSMLSMLSLKRL\ KRKJRKJQKJQKJQKJQKJQKJPKJPJIPJIPJIOIHOIHOIHNIHeLTh\ GNYFINEDCD81D45O89YBAcBBiBCoBDuBNg9YU7hG5s34lB6fK8\ _TATaCNiEGrGAzILlQW_XfMdeLedLecKfbKfaKf`Kf`KfAlfBk\ hCijDhlEfnFeoHcqIbsFsADqC } frm:f1Mandelbrot(XAXIS) {;1stSummationFunc1,MbrotSeries ; Edward Montague-1st summation of func 1 ; using Mandelbrot Series. z = pixel s = 0 n = 1 : z = z*z+pixel s = s+sin(z) u = s/n n=n+1 |u| < 0.5 } 160810dZ_B { ; SciWise-1st Deriv of Mbrot Series-Out the neg. X-axis ; SciWise - 1st deriv. of Mbrot Series ; Out the neg. X-axis ; Fractint Version 2099 Patchlevel 8 ; Fractint Version 2099 Patchlevel 8 reset=2099 type=formula formulafile=160810dZ.PAR formulaname=d1mandelbrot passes=1 center-mag=-1.48281949060809600/+0.000000000000000\ 46/1131367/1.0 float=y maxiter=10000 inside=0 colors=000CpEAnG9mIDcLGVOJMR<3>RTITVFVWDXYBYZ9XiYX\ tu<3>EPX<3>6j`4pa2ua<3>ccZ<3>aHlaCoa6ra1u<3>YE_YHV\ TJW<3>AOW5PW1QW<3>Wfgcjjknmsrpzvr<3>vcpu_ptVpsRp<3\
UebOh_HlWBpS5sP<3>7WN8QN8KM9EM88K<3>ACRADS89N<2>4\ 08<3>Q3BW4C`5Df6Ek6EoFKtNPzVU<2>zshztbzuYzvczwczzc\ zzczzczfc7zf7zh8zgKzgKzfUzfczecze<3>czjwzz<17>wzz<\ 4>wzzwzwwzwwzmwzmwzgwzcwzTwzRwzPwzO<3>wzBwz8wzF<3>\ wzfwzmwztwzz<3>wzQwzHwbUwZewVqwMi<3>wORwONVON<6>SM\ LSMLSMLSMLSLK<5>QKJQKJQKJ<3>PJIOIHOIHOIHNIHeLThGN<\ 3>1D45O89YB<3>DuB<3>s34<3>TaCNiEGrGAzI<2>fMd<3>bKf\ aKf`Kf`KfAlf<6>IbsFsADqC }
------------- END OF PAR FILE ---------------------- -----Original Message----- From: Fractint [mailto:fractint-bounces@mailman.xmission.com] On Behalf Of sciwise@ihug.co.nz Sent: Wednesday, August 10, 2016 6:54 PM To: Fractint and General Fractals Discussion <fractint@mailman.xmission.com> Subject: [Fractint] dManddz Various routines for examining the Mandelbrot series , some of these generate a rather bland image . This isn't necessarily a bad thing as this might mean that we are taming the chaotic nature of the initializing fractal. d1Mandelbrot(XAXIS) {; Edward Montague ; First Derivative of Mandelbrot Series. x = Pixel z = 1 : z = 2*x*z+1 x = x*x + Pixel |z| < 1000000 } p1Mandelbrot(XAXIS) {; Edward Montague ; Phase of Mandelbrot Series. x = Pixel y = 1 : y = 2*x*y+1 z = y/x x = x*x + Pixel |z| < 1000000 } i1Mandelbrot(XAXIS) {; Edward Montague ; First normalized summation of Mandelbrot Series. z = Pixel s = 0 n = 1 : z = z*z+Pixel s = s+z u = s/n n=n+1 |u| < 4 } f1Mandelbrot(XAXIS) {; Edward Montague ; First summation of function 1 using Mandelbrot Series. z = Pixel s = 0 n = 1 : z = z*z+Pixel s = s+sin(z) u = s/n n=n+1 |u| < 0.5 } _______________________________________________ Fractint mailing list Fractint@mailman.xmission.com https://mailman.xmission.com/cgi-bin/mailman/listinfo/fractint --- This email has been checked for viruses by Avast antivirus software. https://www.avast.com/antivirus