FOTD -- November 10, 2012 (Rating 6) Fractal visionaries and enthusiasts: Today's image shows another image in a fractional fractal. The fractional exponent of the image is 2.236, which, not accidental- ly, is the square root of 5. This expression was calculated 4 levels up the hyperladder with no function applied. The parent fractal produced by this operation is little more than a shapeless blob with a prominent split along the X-axis. But some distance west of the main mass, just north of the X-axis, lies a totally cut-off minibrot. Today's scene lies in an East-type valley of this minibrot. The rating of 6 indicates that inspiration for the fractal was lacking. The name "Split Opinion" points to the split along the X-axis. The relatively fast calculation time of 1-1/2 minutes assures that not too much time will have been wasted if the image fails to satisfy. Check the finished image at: <http://www.crosscanpuzzles.com/Archives.html> and high-definition variations at: <http://www.emarketingiseasy.com/TESTS/FOTD/jim_muths_fotd.html> The back images are online at: <http://www.Nahee.com/FOTD/> Light rain ruled the early morning here atF.C., while clouds ruled the rest of the day. The light winds and temperature of 55F 13C made the day seem quite comfortable however. The next FOTD will be posted before too long. Until whenever, take care, and my current dis-spirited attitude is not connected to the outcome of the recent election. Jim Muth jimmuth@earthlink.net START PARAMETER FILE======================================= Split_Opinion { ; time=0:01:30.00 SF5 at 2000MHZ reset=2004 type=formula formulafile=basicer.frm formulaname=MandelbrotBC3 function=ident center-mag=-1.28787966181/+0.043392037384/2.52e+007 params=2.236/0/4/0 float=y maxiter=3600 inside=0 logmap=224 periodicity=6 mathtolerance=0.05/1 colors=00050X61Y82_93aA4cB5eC6gG7iJ7kN8kQ8lT8lX9m_\ 9mcAnfAniAomBopBpsBptGmuLjuQhvUewZcwc`xhZylWyqUzvR\ zzPvxOswOpvOmtOisOfrNcpN`oNXnNUlNRkMOjMKhMHgMEfMBe\ MFaPJZSNVVRSYVO`ZLcbHffEijAln7or3ru0tr3sp6sn8slBsj\ EshGsfJsdLsbOs`RsZTsXWsVYsQShLNYGINBDC6818A2AC3CE4\ EF5GH6HJ7JL8LM9NOAPQBRSCSTDRTEPTFOTGMSILSJKSKISLHR\ NFROERPDRQFPRGNRIMRJKSLISMHSOFTPETRCTSAUU9UV7UX5VY\ 4V_2V`1Vmzeivbfr_cnY`jVYfSVbQSZNPVLLRI020INFFJDCFA\ 9B7675332gxScsQ`oOYjMVfKSbIPYGMUEIQCFLACH89D668434\ 298v87q76l66g65b54Y44T33O32J22E119004TAZP8UL7QI6LE\ 5HA3D7283142ZN1WL1TJ1QH1OF1LE1IC0GA0D80A7085053021\ OL2MJ1LI1JH1IF1GE1FD1DB1CA1A90970760650430320110qg\ tjalcXeXRZRMSKGLDBE657xs3so2ok2kg2gd2cc2vcEucEtcEr\ cEqcEpmEomEmmDlmDkmDjmDhmDgmDfzDezDczCazC_zCYzBWzB\ VzBmzAmzAmzAmz9mz9mz9mz8mz8zz8zz8zzLzzXzzYzzYzzYzz\ XzzXzzXzzXzzXzzXzzZzz_zz` } frm:MandelbrotBC3 { ; by several Fractint users e=p1, a=imag(p2)+100 p=real(p2)+PI q=2*PI*fn1(p/(2*PI)) r=real(p2)+PI-q Z=C=Pixel: Z=log(Z) IF(imag(Z)>r) Z=Z+flip(2*PI) ENDIF Z=exp(e*(Z+flip(q)))+C |Z|<a } END PARAMETER FILE=========================================