A clutch of blood red dragon eggs found in the secret chambers of a powerful wizard.
Speaking of wizardry the speed at which you access the finished fractal
at http://maxitersfractalfollies.blogspot.com is almost magical.

fract333.gif       { ; blood red dragon eggs
                     ; blank
                     ; calctime   0:17:53.24
                     ; created Jul 26, 2010
                     ;  Fractint Version 2004 Patchlevel 9
  reset=2004 type=formula formulafile=frac_ml.frm
  formulaname=kpassion_balls function=cos
  center-mag=-1.7622/0.000751252/42.46501 params=0.1/0/2/128/0/0
  float=y maxiter=1500 inside=atan outside=summ periodicity=0
  colors=0000czF00F00F00F00F00G00G00G00G00H00H00H00H00I00I00I00I00I00J00J0\
  0J00J01K01K01K01K01L01L01L01L01L01M01M01M01M01N01N01N01N01O01O01O01O02O0\
  2P02P02P02P02Q02Q02Q02Q02R02R02R02R02R02S02S02S02S02T02T02T03T03U03U03U0\
  3U03V03V03V03V03V03W03W03W03W03X03X03X03X03Y03Y03Y04Y04Y04Z04Z04Z04Z04_0\
  4_04_04_04`04`04`04`04`04a04a04a04a04b04b05b05b05c05c05c05c05c05d05d05d0\
  5d05e05e05e05e05f05f05f05f05g06h06h06h06h06h16h17h17h27i27i28i38i38i38i4\
  9i49j49j59j5Aj5Aj5Aj6Aj6Ak6Bk7Bk7Bk7Bk8Ck8Ck8Cl9Cl9Dl9DlADlADlAElBEmBEmB\
  EmBEmCFmCFmCFmDFnDGnDGnEGnEGnEHnFHnFHoFHoGIoGIoGIoHIoHIoHJpHJpIJpIJpIKpJ\
  KpJKpJKqKLqKLqKLqLLqLMqLMqMMrMMrMNrMNrNNrNNrNNrOOsOOsOOsPOsPPsPPsQPsQPtQ\
  QtRQtRQtRQtSRtSRtSRuSRuTRuTSuTSuUSuUSuUTvVTvVTvVTvWUvWUvWUvXUwXVwXVwYVwY\
  VwYVwYWwZWxZWxZWx_Xx_Xx_Xx`Xx`Yy`YyaYyaYyaZybZybZybZzc_
  }
frm:kpassion_balls {; variant of Paul W. Carlson and Kerry Mitchell
    ;****************************************************
    ; Always use floating point math and outside=summ.
    ;
    ; Parameters:
    ;   real(p1) = a factor controlling the size of the balls
    ;   imag(p1) = number of iterations to skip
    ;   real(p2) = number of color ranges
    ;   imag(p2) = number of colors in each color range
    ;
    ; Note that the equation variable is w, not z.  Always
    ; initialize z to zero.
    ;****************************************************
  w = 0
  c = pixel
  z = 0
  bailout = 0
  iter = 0
  range_num = 0
  skip = imag(p1)
  k=real(p3)
  r=imag(p3)
    ;****************************************************
    ; In the accompanying par file, mndballs.par,
    ; we have 8 color ranges with 30 colors in each range
    ; for a total of 240 colors. The first range starts at
    ; color 1.  Pixels will use color 0 when |w| >= 1000.
    ; Other values can be used here as long as the product
    ; of num_ranges times colors_in_range is less than 255.
    ; Color 0 is reserved for the background color and color
    ; 255 can be used for the inside color.
    ;****************************************************
  num_ranges = real(p2)
  colors_in_range = imag(p2)
    ;****************************************************
    ; Real(p1) controls the size of the balls.
    ; These values will usually be in the range 0.001 to 0.1
    ;****************************************************
  ball_size = real(p1)
  index_factor = (colors_in_range - 1) / ball_size
  :
    ;****************************************************
    ; The equation being iterated.  Almost any equation
    ; that can be express in terms of a complex variable
    ; and a complex constant will work with this method.
    ; This example uses the standard Mandelbrot set equation.
    ;****************************************************
  w =w*w + c
  c= c + k*fn1(w)
    ;****************************************************
    ; If the orbit point is within the specified distance of a circle,
    ; set z to the index into the colormap and set the bailout flag.
    ;****************************************************
  IF (iter > skip)
    wr = real(w), wi = imag(w)
    d = wr * wr + (wi - .5) * (wi - .5)
    IF (d < ball_size)
      bailout = 1
      delta = ball_size - d
    ELSEIF (wr * wr + (wi + .5) * (wi + .5) < ball_size)
      d = wr * wr + (wi + .5) * (wi + .5)
      bailout = 1
      delta = ball_size - d
    ELSEIF ((wr - .5) * (wr - .5) + wi * wi < ball_size)
      d = (wr - .5) * (wr - .5) + wi * wi
      bailout = 1
      delta = ball_size - d
    ELSEIF ((wr + .5) * (wr + .5) + wi * wi < ball_size)
      d = (wr + .5) * (wr + .5) + wi * wi
      bailout = 1
      delta = ball_size - d
    ENDIF
  ENDIF
  IF (bailout)
    z = index_factor * delta + range_num * colors_in_range + 1
  ENDIF
    ;****************************************************
    ; Cycle through the range numbers (0 thru num_ranges - 1)
    ; With two color ranges, even iterations use color
    ; range 0, odd iterations use color range 1.
    ;****************************************************
  range_num = range_num + 1
  IF (range_num == num_ranges)
    range_num = 0
  ENDIF
    ;****************************************************
    ; Since we are using outside=summ, we have to subtract
    ; the number of iterations from z.
    ;****************************************************
  iter = iter + 1
  z = z - iter
    ;****************************************************
    ; Finally, we test for bailout
    ;****************************************************
  bailout == 0  && |w| < 1000
  ;SOURCE: 98msg.frm
}
Roger Alexander

Turn down-time into play-time with Messenger games Play Now!