In  case the attachments  aren't  working ;  here's
a pure text file , within this message .
 
 
   LnDioGH.par   AND   LnDioGH.frm   ,   together .
 
 
 

START PARAMETER FILE=======================================
 
Diode              {
  reset=1821 type=formula formulafile=c:\winf1821\alndgh.frm
  formulaname=LnDioGH
  corners=-0.16588419/0.25978091/-0.15031315/0.1691023 float=y
  maxiter=512 logmap=yes
  colors=00000j0j0jj0j00j0j0jjkkkkrkdmwW000W0WW000WW0W0WWFNF<5>zNFFVF<5>zV\
  FFbF<5>zbFFjF<5>zjFFrF<5>zrFFzF<5>zzFFFN<5>zFNFNN<5>zNNFVN<5>zVNFbN<5>zb\
  NFjN<5>zjNFrN<5>zrNFzN<5>zzNFFV<5>zFVFNV<5>zNVFVV<5>zVVFbV<5>zbVFjV<5>zj\
  VFrV<5>zrVFzV<5>zzVFFb<5>zFbFNb<5>zNbFVb<5>zVbFbb<5>zbbFjb<5>zjbFrb<5>zr\
  bFzb<5>zzbFFj<5>zFjFNj<5>zNjFVj<5>zVjFbj<5>zbjFjj<5>zjjFrj<4>rrjzywccdWW\
  Wz000z0zz000zz0z0zzzzz
  }
 

comment {
 
           From :
 
           sciwise@ihug.co.nz       July  2009
 
           copyright c  2009
 

       This is a model of a diode , as an electronic
     component .
       It utilizes Newton's method to solve a non-linear
     equation ; known as the ideal diode or Shockley equation .
       The very basic form of this equation is :
 
           i = Ids*(exp(Vs/(n*Vt))-1)
 
       where ,
 
      Q =  1.6*(10^-19)   Electronic Charge   .
      K =  1.38*(10^-23)  Boltzman's constant .
      T =  Absolute Temperature , in Kelvins  .
 
      T = 273 [K] + degreesC
     For degreesC = 25 , Vt ~= 0.025 [v]
 
    Ids =  Saturation current                 .
     Vs =  Applied , source , voltage         .
      n =  Ideality factor = ( 1 to 2 )       .
     Vt =  K * T / Q       Thermionic Voltage .
 
     A more realistic model of a diode will include the finite
   ohmic resistance of the leads .
     A parallel conductance is also modeled , as this speeds
   the convergence of Newton's method .
     Therefore the circuit we're modelling looks like this .
 

                     i -->
         ----------------------------,
        '                            |
        |                   -------------------,
        |                   |                .---.
    Vs  -               D  ---               |   |  Gm
       ---                 /_\               |___|
        |                   |__________________|
        |                            |
        |                          .---.
        |                          |   | Rs 
        |                          |___|
        '----------------------------'
 

      Where D is represented by the ideal diode equation .
 
      Now the total current , i , flowing through this
    circuit is :
 
         i = Ids*(exp((Vs-i*Rs)/(n*Vt))-1) + Gm*(Vs-i*Rs)
 
     This equation needs to be solved in terms of i and
   be put in a form that can be readily and accurately
   solved through Newton's method .
     The steps involved are :
 
 1)
    Let    log(x) = (Vs-i*Rs)/(n*Vt) 
 
 2)
    Solve  log(x) = (Vs-i*Rs)/(n*Vt)  in terms of   i  .
               i  = -(n*Vt*log(x)-Vs)/Rs
 3)
   Substitute the expression for i , from (2) into
 
         i = Ids*(exp((Vs-i*Rs)/(n*Vt))-1) + Gm*(Vs-i*Rs)
 
     -(n*Vt*log(x)-Vs)/Rs = Ids*(x-1) + Gm*(Vs--((n*Vt*log(x)-Vs)/Rs)*Rs)
 
     -(n*Vt*log(x)-Vs)/Rs = Ids*(x-1) + Gm*((n*Vt*log(x)/Rs)*Rs)
 
   
        (Vs-n*Vt*log(x))/Rs = Ids*(x-1) + Gm*(n*Vt*log(x))
 
 
 
 4)
   Solve (3) for x ,
 
         x = -((Gm*n*Rs*Vt+n*Vt)*log(x)-Vs-Is*Rs)/(Is*Rs),Is*Rs,1);
 
 5)
    Find the derivative of (4) in terms of  x  .
 
       1 = -(Gm*n*Rs*Vt+n*Vt)/(Is*Rs*x)
 
6)
     Now  Newton's iteration  formula is :
 
            
                       x  = x - f(x) / f '(x)    ,      where   f '(x)  == d f(x) / dx  .
 
7)
    For  this  example  :
 
                    f(x) =  x = -((Gm*n*Rs*Vt+n*Vt)*log(x)-Vs-Is*Rs)/(Is*Rs),Is*Rs,1)
 
    and
 
                  f '(x) =  1 = -(Gm*n*Rs*Vt+n*Vt)/(Is*Rs*x)
 

8) 
     Therefore  Newton's  iteration formula for this example is :
 

        x = x - (   -((Gm*n*Rs*Vt+n*Vt)*log(x)-Vs-Is*Rs)/(Is*Rs),Is*Rs,1) - x )/( -(Gm*n*Rs*Vt+n*Vt)/(Is*Rs*x)-1)
 

9)     
     Simplifying  (8)
 

     x = x -( (-Ids*Rs-Vs)*x + Ids*Rs*x*x + (n+Gm*n*Rs)*Vt*x*log(x) ) /
 
     ( (n + Gm*n*Rs)*Vt+Ids*Rs*x )
 

Substitute
 
    u = Gm*n*Rs*Vt+n*Vt
   vr = Ids*Rs
 
    x = x-( -(Vs+vr)*x + vr*x*x + u*x*log(x) )/(vr*x+u))
 

    In  this logarithmic format overflow , and possibly underflow , is avoided .
 

10 )
        We need to be able to convert  x back to i  , to do this we use the inverse of the original
     substitution  :
 

          log(x) = (Vs-i*Rs)/(n*Vt) 
 
    
          Solving  for  i  ,
 

            i  = - ( log(x)*(n*Vt) - Vs  ) / Rs
 
Substitute
 
           Pt = n*Vt
 
            i  = - ( log(x)*Pt - Vs  ) / Rs
 
   Between successive iterations of Newton's formula
 the previous value of i is compared with the present,
 if the absolute difference is less than a predefined
 tolerance , Pd , then the iteration stops .
 
   Vs is a complex voltage source , possibly equivalent
 to a multi phase voltage source .
 

  This is a basic diode model and doesn't include the
 effects of diode junction capacitance .
 

  For small voltages a purely exponential representation
 of the diode model may converge quicker than the
 logarithmic and still remain accurate .
 
 The logarithmic model has been implemented as a BASIC
language program and compared with data from  a SPICE
simulation , for a real voltage source , there is
good agreement .
 For a Complex voltage source , the few samples
generated from the BASIC program are in good agreement
with those from  MAXIMA  CAS .
 

 }
 
 
 
 
 

LnDioGH{
;
;
;                     Complex Voltage - Complex Current
;                           Diode Characteristics .
;
;                          for 1N4148 silicon type .
;                               Level 1 model .
;
;                               at 25 degrees C
;
;
 Pd = (10^-13),
 Gm = 9.4*(10^-13),
Ids = 2.52*(10^-09),
 Rs = 0.968,
  n = 1.752,
 Vt = 0.025,
  u = Gm*n*Rs*Vt+n*Vt,
 Pt = n*Vt,
 vr = Ids*Rs,
 Vs = Pixel,
  x = (0.1,0),
  x = x-((u*x*log(x)+vr*x*x-(Vs+vr)*x)/(vr*x+u)),
  y = -(Pt*log(x)-Vs)/Rs,
tol = (1,0):
  u = y;
  x = x-((u*x*log(x)+vr*x*x-(Vs+vr)*x)/(vr*x+u));
  y = -(Pt*log(x)-Vs)/Rs,
tol = |u-y|,
tol > Pd
}
 
 
 
 
 
 
 
comment {
 

    The floating point option needs to be selected ,
 
    512 iterations , or  more , should be selected .
 
    Also a logarithmic palette  .
 
   
    Minibrot structures aren't immediately apparent at
  the default parameter settings .
 
    A parameter setting of :
 
         xmin    - 0.005770310598      xmax   - 0.005666943901
         ymin      0.000516417395       ymax     0.000594104392
 

    shows embedded mimibrots and spirals , wether this
  is relevant in a real diode is unknown .
 

    You  might be able to locate mimibrots elsewhere on
the  map .
 
 
 
 
}
 

END PARAMETER FILE=========================================
 
 
----- Original Message -----
From: JackOfTradeZ@comcast.net
To: fractint@mailman.xmission.com
Sent: Thursday, July 16, 2009 4:21 PM
Subject: Re: [Fractint] Diode Fractal

.


No PAR or FRM is seen, and no attachments.
 Maybe it is problem on my end?
I am using comcast web client email.


.


_______________________________________________
Fractint mailing list
Fractint@mailman.xmission.com
http://mailman.xmission.com/cgi-bin/mailman/listinfo/fractint