I was looking around in Jim Muth's FOTD for May 15, 2011 and I found a lot of interesting stuff. There was one area that looked kind of like an airplane wing. I kept adjusting things until it turned into an insect. The name Many Happy Buggy is a play on Jim's Many Happy Returns. The find was too lucky to only be seen once, so I decided to post it.
Here is a link to a web page with an image:
The parameter file used to make this image is below:
Many_Happy_Buggy { ; Exported from Fracton.
; Many_Happy_Buggy by Mike Frazier
; Based on Jim Muth's FOTD for
; 20110515 Many_Happy_Returns
reset=2004 type=formula formulafile=fracton.frm
formulaname=SliceJulibrot5 passes=1 float=y
center-mag=-1.746310973822129/6.542081035442777e-0\
9/296296.3/1/-90/0
params=0/0/0/0/0/0/0/0/2.0035/0 maxiter=1500
inside=0 logmap=62 periodicity=6
colors=000HEWCAO87G438fGaWCSL8JA490000000000000000\
000000000000000000FG0AB055IcM9KBixhGXLAME5B7gSg_N_\
TITMEME9E747q25JqSC_I6I9j8hd7bZ6XT5SN4MH3GB2B5150r\
i0g_0XR0MI0B92bR1JDaOIVKFPGCJC9C866436jdWP6LG4A82O\
TLKOIHKFDGCeHKgEGiBCk88fABbBDZCFVDHQEKMFMIGOEHQiUF\
mj5tm8jgBk_ElZGkaIkdJjgLjjMimOipPhsRhvSbuVXtYSs`Ms\
cGrfBqi5pl0poOMvPSrQYnRbjShgTmcUs_UxXTmXTcXTUXTKXT\
AXQQcNejLtpMqqNnrOksOhsPetQbuQ_uSXtUVtWSsYQs_Nr`Lr\
8X3AZAC_HDaOFbVHdaIehKgoLhvQcvV_vZWvcRvgNvlJvpFvjD\
qeBm`9hW8dQ6`L4WG2SB1O75L48J1BHSCOrDUhAP_8KR6FI4A3\
10925`jcOVQCFDm3Kc2GU1CK18A041cM0QE0D7xv7pn6hg5a_4\
UT3MM2FE1770nholvM_gGOTBCE5sbmiWd`QXSJPIDG968ApC8g\
A6Z85Q63H4182GwmDneBeZ9YS6PL4HE287gY1h0k`0cU0cM0cF\
0m70muDmgJm`GmVDmPAmI8mC5m62mhz5_z4Rz3Iz29z1GzVAzK\
5zAtzRlzNezKZzGSzDLzAEz67z3zzwzzUzzszzkzzczzWzzOzz\
Gzz8zzhzzXzzMzzBzzszzkzzc }
frm:SliceJulibrot5 {
; draws all slices of Julibrot
pix=pixel,u=real(pix),v=imag(pix),
a=pi*real(p1*0.0055555555555556),
b=pi*imag(p1*0.0055555555555556),
g=pi*real(p2*0.0055555555555556),
d=pi*imag(p2*0.0055555555555556),
ca=cos(a),cb=cos(b),sb=sin(b),cg=cos(g),
sg=sin(g),cd=cos(d),sd=sin(d),
p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd),
q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd),
r=u*sg+v*ca*sb*cg,s=v*sin(a),esc=imag(p5)+9,
c=p+flip(q)+p3,z=r+flip(s)+p4:
z=(-z)^(real(p5))+c,
|z|<esc
}
--
Mike Frazier
www.fracton.org