Some fascinating and beautiful pieces here, thanks for sharing them.

On 23 November 2014 at 17:50, Multifrac@t-online.de <Multifrac@t-online.de> wrote:
Of course I wanted to find out
what a regular Julia would make
of the Mandel Inside.
To make it short, the Mandel plays
a bigger part, but itīs still a
Julia.
And the result is a beautiful
image with a lot of interesting
and well shaped details.
;
The calculation time is very slow,
almost an hour, caused by the border
calculation which is time absorbing.
;
https://www.dropbox.com/sh/ua45wf1v84p8nsw/AAAWxi3xeFg_5oZ_zV1wvRtua?dl=0
;
Petta
;
-------------------------------------Start Par---------------------------
40205-25           { ; Togetherness
                     ; Julia-Mandel-Manymods
                     ; Time 0.47.29.26 Reso 1280/1024
                     ; Regular Julia and Dbl Mandel
  reset=2004 type=formula formulafile=mfr_12.frm
  formulaname=multifractal_12 function=sin/sin/exp/sin passes=t
  center-mag=-0.0124351/0.00493725/1.135931/1/84.9999999999999858/-5.05012\
  698326368081e-014
  params=0.9974642170476399/0.1807275612659077/40205.32595760301/21115.050\
  6020602/152048.0404808025/384.16048940111/384.00482000595/64.3007680004/\
  512.1007683001/768.20076800256 float=y maxiter=3072 inside=maxiter
  periodicity=0 rseed=-2436
  colors=000<29>000000000<3>000330<6>220220220<3>110000110<2>000KA4<7>gcOj\
  gRmjT<3>zzc<9>UOFRKDOGA<3>A00<9>f0Ci0Dl0F<3>z0K<6>Z0EV0DR0C<3>A08004000<\
  26>000<4>000<7>Q0UU0YX0a_0dc0hf0l<2>p0w<4>_0dX0aU0Y<2>K0NH0JG0NE1R<3>7UX\
  6`Z4h_2oa0wc<10>2WI2TG2RE<3>4G54D36F5<16>kkammcpoe<3>zwm<3>mhZjdVfaS<3>V\
  MCRI8OE4KA0000<12>000
  }
------------------------------------End------------------------------------

_______________________________________________
Fractint mailing list
Fractint@mailman.xmission.com
https://mailman.xmission.com/cgi-bin/mailman/listinfo/fractint