Another plant inspired fractal. Do I need a policy on giving posts names?  I could say "the description is swirling ferns"
 which is analogous to giving it a title but I could also use the terms "caption" or "tag". Just can't make up
 my mind I suppose. Looking at the color of the dark green I could have also used "a plate of spinach"
 but that doesn't sound dignified enough.


fract291.gif       { ; ferns
                     ; blank
                     ; calctime   0:28:53.39
                     ; created Jul 03, 2010
                     ;  Fractint Version 2004 Patchlevel 9
  reset=1960 type=formula formulafile=frac_ml.frm
  formulaname=tri-fn+fn function=sqrt/sqr
  center-mag=0.55523/1.10691/2.73224
  params=1000.235145115513/1.456831568346202/0.3772087771233253/0.02272103\
  030487991 float=y maxiter=12000 inside=0 outside=atan periodicity=0
  cyclerange=0/255
  colors=0R00Q00P00O00N00M00L00K00J00I00H00G00F00E00D00C00B00A009008007006\
  00500400300000200000000000200300500600800A00B00D00E00G00I00J00L00M00O00Q\
  00R00T00U00W00Y00Z00`00a00c00e00f00h00i00k00m01m03m04n06n07o09o0Ao0Cp0Ep\
  0Fq0Hq0Iq0Kr0Lr0Ns0Ps0Qs0St0Tt0Vu0Wu0Yu0Zv0`v0bw0cw0ew0fx0hx0iy0ky0mz0mz\
  1mz3nz5nz7oz9ozBpzDpzFpzHqzJqzLrzNrzPrzRszTszVtzXtzZuz`uzbuzdvzfvzhwzjwz\
  lwznxzpxzryztyzvzzxzzzzzyzzwzzvzzuzztzzrzzqzzpzznzzmzzlzzkzzizzhzzgzzezz\
  dzzczzbzz`zz_zzZzzXzzWzzVzzTzzSzzRzzQzzOzzNzzMzzKzzJzzIzzHzzFzzEzzDzzBzz\
  Azz9zz8zz6zz5zz3zz2zz0yz0xz0vz0uz0tz0sz0qz0pz0oz0mz0lz0kz0iz0hz0gz0fz0dz\
  0cz0bz0`z0_z0Zz0Yz0Wz0Vz0Uz0Sz0Rz0Qz0Oz0Nz0Mz0Lz0Jz0Iz0Hz0Fz0Ez0Dz0Bz0Az\
  09z08z06z05z03z02z00z00y00x00w00v00u00t00s00r00q00p00o00n00m00l00k00j00i\
  00h00g00f00e00d00c00b00a00`00_00Z00Y00X00W00V00U00T00S0
  }
frm:tri-fn+fn    { ; Sylvie Gallet
               ; Thanks to Kerry Mitchell for the idea!
               ; real(p1) = bailout
               ; imag(p1) must be different from 0 (>=1 recommended)
               ; z=fn1(z) + p2*fn2(z)
   ; This formula must be used with decomp = 256 and periodicity = 0
   ;
   z1 = pixel , mz1 = cabs(z1) , summ = iter = 0
   b1 = abs(real(p1)) , f = b1^0.1
   b2 = b1*f , b3 = b2*f , b4 = b3*f , b5 = b4*f , b6 = b5*f
   b7 = b6*f , b8 = b7*f , b9 = b8*f , b10 = b9*f , b11 = b10*f
   iter1 = iter2 = iter3 = iter4 = iter5 = iter6 = iter7       \
         = iter8 = iter9 = iter10 = summ_tot = iter_tot = 0
   k = imag(p1) * (0.0,6.28319530718)
   :
   iter = iter + 1 , za = fn1(z1) , a = cabs(za)
   zb = p2*fn2(z1) , b = cabs(zb)
   z1 = za + zb , mz1 = cabs(z1) , a_b = abs(a - b)
   summ = summ + (mz1 - a_b) / (a+b - a_b)
   IF (mz1 > b1)
    IF (iter1==0)
     iter1 = iter
     iter_tot = iter_tot + iter1 , summ_tot = summ_tot + summ
    ENDIF
    IF (mz1 > b2)
     IF (iter2==0)
      iter2 = iter
      iter_tot = iter_tot + iter2 , summ_tot = summ_tot + summ
     ENDIF
     IF (mz1 > b3)
      IF (iter3==0)
       iter3 = iter
       iter_tot = iter_tot + iter3 , summ_tot = summ_tot + summ
      ENDIF
      IF (mz1 > b4)
       IF (iter4==0)
        iter4 = iter
        iter_tot = iter_tot + iter4 , summ_tot = summ_tot + summ
       ENDIF
       IF (mz1 > b5)
        IF (iter5==0)
         iter5 = iter
         iter_tot = iter_tot + iter5 , summ_tot = summ_tot + summ
        ENDIF
        IF (mz1 > b6)
         IF (iter6==0)
          iter6 = iter
          iter_tot = iter_tot + iter6 , summ_tot = summ_tot + summ
         ENDIF
         IF (mz1 > b7)
          IF (iter7==0)
           iter7 = iter
           iter_tot = iter_tot + iter7 , summ_tot = summ_tot + summ
          ENDIF
          IF (mz1 > b8)
           IF (iter8==0)
            iter8 = iter
            iter_tot = iter_tot + iter8 , summ_tot = summ_tot + summ
           ENDIF
           IF (mz1 > b9)
            IF (iter9==0)
             iter9 = iter
             iter_tot = iter_tot + iter9 , summ_tot = summ_tot + summ
            ENDIF
            IF (mz1 > b10)
             IF (iter10==0)
              iter10 = iter
              iter_tot = iter_tot + iter10 , summ_tot = summ_tot + summ
             ENDIF
             IF (mz1 > b11)
              iter_tot = iter_tot + iter , summ_tot = summ_tot + summ
              z = exp (summ_tot * k / iter_tot)
             ENDIF
            ENDIF
           ENDIF
          ENDIF
         ENDIF
        ENDIF
       ENDIF
      ENDIF
     ENDIF
    ENDIF
   ENDIF
   mz1 <= b11
   }
Roger Alexander

Turn down-time into play-time with Messenger games Play Now!