FOTD -- August 24, 2008 (Rating 6.5) Fractal visionaries and enthusiasts: Today's FOTD is very late because on Saturday I somehow got involved in another of FL's antiquing expeditions. But all was not lost. We found an oriental-style lamp for $15, which FL claims is worth over $250. To me it looks like an old lamp, but who knows . . . Today's image came about when I divided Z^2 by (Z^(6)+3). The parent fractal resembles a Mandelbrot set starting to morph into the Z^8 Mandeloid. Today's scene is located in some island debris that has appeared in the northwest interior of the large period-2 bud. The image is extremely fast, taking only 24 seconds to run on the fast machine. The name "Seven from Eight" refers to the fact that, though the central minibrot has only 7 lobes, the surround- ing pattern is a series of powers of 8. The rating of a 6.5 could be a little liberal for such a hasty image, but the image is still better than average for one of order-8. The finished image will be available on the FOTD web site as soon as Paul can calculate and post it. The FOTD web site may be accessed at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> The weather was near perfect here at Fractal Central on Friday. Need anything more be said. The fractal cats enjoyed the great conditions to the best of their ability. My day was busier than expected, yet still within reason. Expect the next FOTD in about 6 hours. But do not be too disappointed if it does not make it. Until next time, take care, and look for those extra iterations. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Seven_from_Eight { ; time=0:00:24.58-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=DivideJulibrot center-mag=-3.653068462538817/+0.2509654289884953/\ 1.06659e+010/1/-85/0 params=0/0/0/0/0/0/0/0/8/3 float=y maxiter=750 inside=0 logmap=47 periodicity=10 mathtolerance=0.05/1 colors=000GACKAFOAISALWAN_AVcAbgAjkArnGygWo`ccWmUh\ xKztAqp8mjBhfDcbGZ_IUYKPVLKRMGOMKHNOBOS6OXjZayiWjn\ QXsRTpRPnRLlRHiRDgR9eR5cX9XbDQhHJnLCsO5nS5jW5fZ5bb\ 5Ze5aZGdSRgMajFlm9vbFZTLBPLQLLdOOgRQiTSlWUnZXq`Zsc\ `vebxCAyIFtNJpTNkYRgbVcnXEj_LgaRdcXaebZghWinaglgej\ mcisagy_frahlbifck`elVfnPgoOirOluNmxNozMpmLp`KpOJZ\ YIIgI1pM9iPHbTPWWXQ_dJblCes6dtBcuFbvJawO`xS_zWZzUY\ zSXzQWzOVzMUzKTzITzGTzSTzcTzoMzmGzlAzj4ziHzZTzOezD\ qz2NzKmzV7zZ9zSAzLBzEszXdzOQzGSzPMzJHzDSzzMzzHzzkz\ zUzzFzzczzXzzQzzJzzmzz`zzOzzYzzSzzNzzHzz9zzAzzBzz2\ zz7zzQzzUzzazzizzgzzezzdzz`zz`zz`zz`zz`zzgzzlzzqzz\ vzz0zz4zz8zzCzzGzzQzzZzzhzzqzzbzzzzzzzzzzzzzzzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\ zzzzzzzzzzzzzzzzzzzzzzzzz } frm:DivideJulibrot {; draws 4-D slices of DivideBrot Julibrots pix=pixel, u=real(pix), v=imag(pix), a=pi*real(p1*0.0055555555555556), b=pi*imag(p1*0.0055555555555556), g=pi*real(p2*0.0055555555555556), d=pi*imag(p2*0.0055555555555556), ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g), sg=sin(g), cd=cos(d), sd=sin(d), aa=-(real(p5)-2), bb=(imag(p5)+0.00000000000000000000001), p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd), q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd), r=u*sg+v*ca*sb*cg, s=v*sin(a), c=p+flip(q)+p3, z=r+flip(s)+p4: z=sqr(z)/(z^(aa)+bb)+c |z|< 1000000 } END PARAMETER FILE=========================================