FOTD -- August 15, 2008 (Rating 8) Fractal visionaries and enthusiasts: In today's fractal I divided Z^2 by (Z^(0.000001)+5), or some- thing like that, and then added C. At least, that's what I think happened when I entered the parameters. But regardless of what actually happened, the resulting parent fractal resembles an oversized Mandelbrot set, though deep inside it is different. I found today's scene on the edge of the infinitely divided main spike, in the area just east of the large minibrot. This is quite a rich area, filled with surprises, an area which until now I have largely ignored. I named the image "Little Critters" when I noticed the dark insect-like things sitting on the webs surrounding the central minibrot. Then I rated the image at an 8, which includes a small reward for my coloring. The brief calculation time of 1-1/3 minutes will make everyone but the most impatient fractalist happy. And even those impatient few will be only slightly discombobulated. To avoid all possibility of discombobulation however, the finished image may be accessed on the FOTD web site at: <http://home.att.net/~Paul.N.Lee/FotD/FotD.html> Too many clouds and a threat of rain kept Thursday from being perfect here at Fractal Central. But the temperature of 82F 28C was quite pleasant and the rain held off until nightfall, so the fractal cats had nothing to complain about. I had nothing to complain about either. So I'm not complaining. The next Fractal of the Day will be posted in 24 hours. Until then, take care, float like a duck and sting like a flea. Jim Muth jamth@mindspring.com jimmuth@aol.com START PARAMETER FILE======================================= Little_Critters { ; time=0:01:20.40-SF5 on P4-2000 reset=2004 type=formula formulafile=allinone.frm formulaname=DivideJulibrot center-mag=-10.49111003\ 76656/+0.00000459624450347/5.459246e+011/1/177.5/0 params=0/0/0/0/0/0/0/0/2.000001/5 float=y inside=0 maxiter=1800 logmap=200 periodicity=10 mathtolerance=0.05/1 colors=000K8_K9bK9dKAgKAiKEkKHmKKoKNqKQsKUsKXvJ`vG\ cxDfvAjw7nxAqyKuzUvuZwqcwlhuhmscrq_voVzmRzkUziXzfZ\ zbazZczXfzVhFSdEP`CNXBKTAHP8FL7CH69D479345222`_IZZ\ HYXGXWGWVFVUFTTESSERQDQPCPOCNNBMMBLLAKJ9JI9HH8GG8F\ F7EE7DC6BB5AA5994884773552442331221110AM38H26D1481\ 240oYOjULeRJ`OHXLFSIDNFAIC8E969644324Yz3Xz3Wz3Vz3V\ z3Uz3Tz3Tz3Sz3Rz3Rz3Qv3Ps2Po2Ok2Ng2Nd2Mc2Lb2L`2K_2\ JZ2JY2IW2HV2HU1GT1FS1EQ1EP1DO1CN1CL1BK1AJ1AI19H18F\ 08E07D06C06A059048047036024023012001W0NU0LS0KR0Jq4\ 5n45k45h45e35b35_35X35U35R25O25L25I25F25J79MCCQGFT\ LIWPL_UObYRfbUifXlk_pobstevxhuwitvisuirtiqsipriori\ nqimpiloiknijmiilihligjfgicfh`fgYffVedSecPdbMd`JdZ\ G_ULVSPRRUMQYHPbDQfEReESeETeEUeFUeFWeFYdF_dKadPcdU\ edZgdbidfkajm_noYqqWusUuuSuwQvzOwzMxzKyzIzzGzzFzzE\ zzDzzCzzBzzAzz9zz8zz7zz6zz54z49z7Ez9JzCOzETzHYzJbz\ MgzOlzRqzTuzVezRQzNlzVkzY } frm:DivideJulibrot {; draws 4-D slices of DivideBrot Julibrots pix=pixel, u=real(pix), v=imag(pix), a=pi*real(p1*0.0055555555555556), b=pi*imag(p1*0.0055555555555556), g=pi*real(p2*0.0055555555555556), d=pi*imag(p2*0.0055555555555556), ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g), sg=sin(g), cd=cos(d), sd=sin(d), aa=-(real(p5)-2), bb=(imag(p5)+0.00000000000000000000001), p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd), q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd), r=u*sg+v*ca*sb*cg, s=v*sin(a), c=p+flip(q)+p3, z=r+flip(s)+p4: z=sqr(z)/(z^(aa)+bb)+c |z|< 1000000 } END PARAMETER FILE=========================================